1. Richardson-Gaudin integrable models

- Integrable spin models with long-range interactions and conserved charges
 \[
 \hat{Q}_i = \left(S_i^z + \frac{1}{2} \right) + g \sum_{j \neq i} \frac{1}{\epsilon_i - \epsilon_j} \left[\frac{1}{2} (S_i^+ S_j^- + S_i^- S_j^+) + \left(S_i^z S_j^z - \frac{1}{4} \right) \right]
 \]
 - By construction \([\hat{Q}_i, \hat{Q}_j] = 0 \)
 - Richardson-Gaudin Hamiltonians can be constructed as \(\hat{H} = \sum \eta_i \hat{Q}_i \)
 - Integrability follows from Algebraic Bethe Ansatz, Generalized Gaudin Algebra,...

2. Exactly solvable by Bethe ansatz...

- Eigenstates with known product structure
- Defined in terms of rapidities
 \[
 \left| v_1 \ldots v_N \right> = \prod_{i=1}^{N} S^+ \left(\frac{1}{v_i} \right) | \downarrow \ldots \downarrow >
 \]
 satisfying nonlinear Bethe equations
 \[
 \frac{1}{g} + \frac{1}{2} \sum_{i=1}^{N} \frac{1}{\epsilon_i - \epsilon_a} + \sum_{\alpha \neq a} \frac{1}{\epsilon_i - \epsilon_{\alpha}} = 0
 \]

3. ... or through operator identities

- Similar to t-Q framework
 \[
 \hat{Q}_i^2 = \hat{Q}_i - \frac{g}{2} \sum_{j \neq i} \hat{Q}_j
 \]
 - Quadratic Bethe equations
 - Easier to solve numerically
 - Introduced in
 - \(\hat{Q}_i | v_1 \ldots v_N > = Q_i | v_1 \ldots v_N > = g \sum_{a=1}^{N} \frac{1}{\epsilon_i - \epsilon_a} | v_1 \ldots v_N > \)

4. Inner products can be calculated as determinants

- Rapidity-based
 \[
 \langle v_1 \ldots v_N | w_1 \ldots w_N > \sim \det K
 \]
 \[
 K_{ab} = \left(\frac{2 + \sum_{i=1}^{L} x_i x_a - \epsilon_a - \epsilon_b}{-x_a - x_b} \right)
 \]
 with \(\{ x_{a} \} = \{ x_a \} \cup \{ x_b \} \)
 - Can be reduced to Slavnov determinant

- Eigenvalue-based
 \[
 \langle v_1 \ldots v_N | w_1 \ldots w_N > \sim \det J
 \]
 \[
 J_{ij} = \left(\frac{1}{g} \left(2 + Q_i \{ v_a \} + Q_j \{ w_b \} \right) - \sum_{k \neq i} \frac{1}{\epsilon_i - \epsilon_k} \right)
 \]
 if \(i = j \)
 \[
 - \frac{1}{\epsilon_i - \epsilon_j}
 \]
 if \(i \neq j \)
 - Does not depend explicitly on rapidities
 - Jacobian of Quadratic Bethe equations for normalization

5. Equivalence through DWPFs and Cauchy matrices

- Inner products can be rewritten as domain wall partition functions
 \[
 \langle v_1 \ldots v_N | w_1 \ldots w_N > \sim \langle \{ v_a \} \big| \prod_{a=1}^{N} S^+ (x_a) | \downarrow \ldots \downarrow >
 \]
 - DWPF equals permanent of Cauchy matrix
 \[
 \text{per} C = \frac{\det C + C^*}{\det C}
 \]
 with
 \[
 C_{aa} = \left(\big| \prod_{a=1}^{N} S^+ (x_a) \big| \right)_a = \frac{1}{\epsilon_a - x_a}
 \]
 - Everything can be expressed in terms of Cauchy matrices!
 \[
 K = \mathbb{I} + C^{-1} (C + C^*)
 \]
 \[
 J = \mathbb{I} + (C + C^*) C^{-1}
 \]
 - Connection can be made with Slavnov determinant, Gaudin matrix, Isernin-Borchardt determinant,...

6. Inner products lead to correlation functions

- Operator acting on on-shell state = sum of off-shell states
 \[
 S_i^z | v_1 \ldots v_N > = \sum_{a \neq i \neq \alpha} \prod_b \left(S^+ (v_b) | S_i^z (v_a) \big| \downarrow \ldots \downarrow > \right) + \prod_a \left(S^+ (v_a) | S_i^z (v_a) \big| \downarrow \ldots \downarrow > \right)
 \]
 - Correlation function = sum of determinants

7. Beyond integrability

- Serves as starting point for
 - Perturbation theory
 - Use of Richardson-Gaudin Bethe ansatz as variational wave function
 - See arXiv:1707.06793
 \[
 \hat{H} = \hat{H}_{\text{int}} + \mu \hat{V}
 \]
