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Ingredients of quenches

Initial state |Ψ0〉

|Ψt〉 = e−iHt|Ψ0〉

Eigenstate basis + overlaps 〈n|Ψ0〉

Form factors of local operators 〈n|Φ(x)|m〉

Compute correlators...

〈Ψt|Φ1(x1)Φ2(x2)...|Ψt〉
〈Ψ0|Ψ0〉
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Initial states
Simplest initial states one can imagine, correspond to nice bound-

ary conditions

R(θ)

4



Initial states

Kreg(θ)R(iπ/2− θ)

First problem relative to lattice quenches: regularization needed

|Ψ0〉 = exp

(∫
K(θ)A†(−θ)A†(θ)

)
|0〉

”Integrable initial states” excite states from all regions of Hilbert
space
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Why QFT quenches then?

When is a QFT quench justified?

θ

K(θ)

Λ

Usual region of validity, ”small quenches” where dangerous high-
energy excited states are suppressed
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Some people care about non equilibrium QFT
and have no interest in spin chains
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”Integrable initial states”

Do they mean anything?

Probably not, but are probably good enough

Evidence:

Free boson/fermion mass quench m0 → m, solvable, integrable

Infinite pre-quench mass quenches (Bad QFT)

Some particular mass-quench protocols in sinh Gordon and sine
Gordon at least well approximated by integrable initial state

Sotiriadis, Takacs, Mussardo, Horvath
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Form factor axioms
Relativistic QFT states parametrized by particle rapidities,

E = m cosh θ, p = m sinh θ

We now seek to compute form factors

F (θ1, . . . , θn) = 〈0|O(x)|θ1, . . . , θn〉
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Form factor axioms

Scattering axiom

Periodicity/crossing

10



Annihilation pole axiom and semi-locality

Recursive equations of the form fn → fn−2

until f2, if particles are local w.r.t. the operator, until f0 if semilo-
cal.

Curse+blessing of relativistic QFT quench dynamics: poles

〈{θ′}|O|{θ}〉 have poles at real rapidities
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Form factor approach to time evolution in
quenches

〈Ψt|O|Ψt〉 =
∑
M,N

∫ ∞
0

dθ′1 . . . dθ
′
M

M !(2π)M
dθ1 . . . dθN
N !(2π)N

×
∏
m

(K(θm))∗
∏
n

K(θn)

×e2mit
∑
m cosh θ′m−2mit

∑
n cosh θn

×〈{θ′m}, {−θ′m}|O|{−θn}, {θn}〉
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Form factor approach to time evolution in
quenches

Simple set up, yet not a lot more

Ising field theory
D. Schuricht and F. H. L. Essler (2012)

repulsive sine Gordon
B. Bertini, D. Schuricht and F. H. L. Essler (2014)

SU(N)× SU(N) Principal chiral sigma model, N →∞
A.C.C. (2016)

13



Repulsive regime of sine Gordon
Bertini, Schuricht, Essler (2014)

H =
1

16π

∫
dx
[
(∂xΦ)2 + (∂tΦ)2

]
− λ cos (βΦ)

β2 > 1/2

Spectrum consists of solitons and antisolitons

|θ1, θ2, . . . 〉a,b,...

These are semiclassically associated with kinks of the bosonic field,
Φ.

Solitons are semilocal with respect to, for example, vertex opera-
tors eiαΦ.
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Annihilation poles vs late time evolution

〈Ψt|O|Ψt〉 =
∑
M,N

∫ ∞
0

dθ′1 . . . dθ
′
M

M !(2π)M
dθ1 . . . dθN
N !(2π)N

×
∏
m

(K(θm))∗
∏
n

K(θn)

×e2mit
∑
m cosh θ′m−2mit

∑
n cosh θn

×〈{θ′m}, {−θ′m}|O|{−θn}, {θn}〉

Late times: perform integrals through stationary phase, leads to
1/tγ terms

Only annihilation poles can cut through these s.p. integrals, pro-
duce leading late-time terms

Leading time given by most divergent region of form factors!
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First leading term for vertex operator: 1 pair
+ 1 pair

∼
∫
dθ′dθ

(2π)2
(K(θ′))

∗
K(θ)e2mit(cosh θ′−cosh θ)

×〈θ′,−θ′|eiβΦ/2| − θ, θ〉

Two annihilation poles vs two rapidity integrals.

Need to regularize with finite volume and carefully massage

= −〈eiβΦ/2〉 t
τ
,

1

τ
=

2m

π

∫
dθ|K(θ)|2 sinh θ +O(K2)

+ S.P. time-decaying stuff

16



Leading terms

Terms with the most annihilation poles compared to the number
of integrals

Only ”diagonal” terms with 0, 1, 2,... pairs

Compute term by term:

〈Ψt|eiβΦ/2|Ψt〉
〈Ψ0|Ψ0〉

= 〈eiβΦ/2〉

[
1− t

τ
+

1

2

(
t

τ

)2

+ . . .

]
Resum!

= 〈eiβΦ/2〉e−t/τ
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Sine Gordon in the attractive regime
A.C.C. and D. Shuricht (2017)

H =
1

16π

∫
dx
[
(∂xΦ)2 + (∂tΦ)2

]
− λ cos (βΦ)

β2 < 1/2

Spectrum of ”breather” bound states, n− 1 breather species, for
β2 < 1/n

Topologically trivial (not kinks!)

particles are local with respect to the bosonic field!
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Boundary bound states

g

Initial state with boundary bound states

|Ψ0〉 =
(

1 + gA†B(0)
)

exp

(∫
K(θ)A†(−θ)A†(θ)

)
|0〉
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Quench spectroscopy
V. Gritsev, E. Demler, M. Lukin, and A. Polkovnikov (2007)
Define power spectrum

P (ω) = lim
t→∞

∣∣∣∣∫ T

0

dteiωt〈Ψt|eiαΦ|Ψt〉
〈Ψ0|Ψ0〉

∣∣∣∣2
Experimentally accessible

Boundary bound state leading contributions are permanent oscil-

lations 〈Ψt|eiαΦ|Ψt〉
〈Ψ0|Ψ0〉

∼ |g|fB cos(mBt− δ)

leads to delta function contributions in the Power spectrum, at
breather masses!
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Problems for the attractive regime

Breather form factors have one less annihilation pole, compared
to soliton form factors.

Breathers do not contribute to the late time dynamics?
Not true as one can see from quench spectroscopy picture

What is the role of boundary bound states on the late-time dy-
namics?
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Leading late-time contributions
The problem is its own solution!

In the presence of boundary bound states, breathers are allowed
to have the extra needed annihilation pole

〈θ′|eiβΦ/2|θ〉 → nothing : (

〈θ′|eiβΦ/2|0B, θ〉 → 〈0|eiβΦ/2|0B〉

〈θ′, 0B|eiβΦ/2|0B, θ〉 → 〈0B|eiβΦ/2|0B〉

Construct the leading late-time contributions on top of the bound-
ary bound states!
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Resummation of leading late-time terms

Leading terms: 0 pairs +BBS, 1 pair +BBS, 2 pairs+ BBS,...

〈Ψt|eiαΦ|Ψt〉
〈Ψ0|Ψ0〉

=

[
〈eiβΦ/2〉 +

|g|2

4
fBB(iπ, 0)

]
e−t/τ+|g|fB cos(Ωt−δ)e−t/τ2

Oscillatory terms aquire exponential damping too!, also oscillation
frequency receives a shift of ”order K2”
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Softened and less accurate quench spectroscopy

Compute power spectrum

P (ω) = lim
t→∞

∣∣∣∣∫ T

0

dteiωt〈Ψt|eiαΦ|Ψt〉
〈Ψ0|Ψ0〉

∣∣∣∣2
Exponential damping → sharp delta-function peaks become soft

Lorentzian peaks

Small shift in oscillation frequency→ The location of the peak is
not exactly on the breather masses, intrinsic uncertainty
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Happy Birthday!

Making up for lost time!
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