Three-point functions in Liouville theory and conformal loop ensembles

Jesper L. Jacobsen 1,2

¹Laboratoire de Physique Théorique, École Normale Supérieure, Paris

²Université Pierre et Marie Curie, Paris

Correlation functions of quantum integrable systems and beyond, ENS-Lyon, 23 October 2017 Collaborators for this subject:

- Yacine Ikhlef
- Hubert Saleur

More general context includes also four-point functions:

• See Hubert Saleur's talk (after this one)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• Main purpose of statistical physics and statistical field theory.

- Main purpose of statistical physics and statistical field theory.
- Several possible techniques (mainly in two dimensions):
 - Integrability of lattice models.
 - Integrability in the continuum limit.
 - Solvable (conformal) field theories.

- Main purpose of statistical physics and statistical field theory.
- Several possible techniques (mainly in two dimensions):
 - Integrability of lattice models.
 - Integrability in the continuum limit.
 - Solvable (conformal) field theories.
- Several different scopes:
 - Just leading asymptotics (power laws, critical exponents).
 - Refinements (structure constants, scaling corrections, logarithms).
 - Continuum limit, or lattice models (finite separation between points).
 - Local or non-local observables.
 - Bulk or boundary models.
 - One, two, three, four, ..., *N*-point functions.

< ロ > < 同 > < 回 > < 回 >

- Main purpose of statistical physics and statistical field theory.
- Several possible techniques (mainly in two dimensions):
 - Integrability of lattice models.
 - Integrability in the continuum limit.
 - Solvable (conformal) field theories.
- Several different scopes:
 - Just leading asymptotics (power laws, critical exponents).
 - Refinements (structure constants, scaling corrections, logarithms).
 - Continuum limit, or lattice models (finite separation between points).
 - Local or non-local observables.
 - Bulk or boundary models.
 - One, two, three, four, ..., *N*-point functions.

This talk

- Three-point functions (asymptotics including structure constants).
- Bulk theories with non-local observables (clusters and loops).

Coulomb gas and loop models

Coulomb gas and loop models

Coulomb gas approach (1980s)

- Orient each loop independently.
- Set $n = e^{i\gamma} + e^{-i\gamma} = 2\cos\gamma$, giving weight $e^{\pm i\gamma}$ to each orientation.
- Make weights local: $e^{i\gamma\frac{\alpha}{2\pi}}$ when a loop turns an angle α to the left.
- Oriented loops are level lines of a (compactified) bosonic field ϕ .
- Critical exponents etc can be computed within this field theory.
- Rigorous (\approx equivalent) alternative: SLE_{κ}, CLE_{κ} [Schramm,...]

- Observables are identified with certain CFT fields ϕ .
- Often $\phi_{r,s} \in \text{Kac}$ table, with $r, s \in \mathbb{N}$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Observables are identified with certain CFT fields ϕ .
- Often $\phi_{r,s} \in \text{Kac}$ table, with $r, s \in \mathbb{N}$.

In that case analytical progress is possible

- Indices r, s are interpreted as "charges" [Dotsenko-Fateev].
 - Correlation functions \neq 0 only if charge-neutral (after "screening").
 - Integral representation. Monodromy of conformal blocks.
- Moreover, singular state at level rs.
 - Then $\langle \phi_{r,s} \cdots \rangle$ satisfies an ODE (solvable for small *rs*, e.g. 2)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What about geometrical observables (loops, clusters)?

Boundary case

- $\phi_{1,2}$ inserts a curve (loop = hull of cluster) at the boundary.
- 4-point fcts (4 bdry, or 2 bdry + 1 bulk) satisfy hypergeom. ODE.
- Two nice applications:
 - Proba that percolation cluster connects two arcs of a circle [Cardy].
 - Left-passage probability of SLE_κ curve [Schramm].

・ロト ・ 同ト ・ ヨト ・ ヨ

Boundary case

- $\phi_{1,2}$ inserts a curve (loop = hull of cluster) at the boundary.
- 4-point fcts (4 bdry, or 2 bdry + 1 bulk) satisfy hypergeom. ODE.
- Two nice applications:
 - Proba that percolation cluster connects two arcs of a circle [Cardy].
 - Left-passage probability of SLE_κ curve [Schramm].

Bulk case: More tricky

- $\phi_{0,1} \times \phi_{0,1}$ marks a bulk point of a loop [Saleur-Duplantier].
- $\phi_{1/2,0} \times \phi_{1/2,0}$ inserts a bulk cluster.
- Challenges: Outside Kac table, and indices $\notin \mathbb{N}$.
 - No differential equations.
 - Bulk fusion of such fields: "in progress" [Gainutdinov, JJ, Saleur].

< ロ > < 同 > < 回 > < 回 >

"Geometrical" version of the Coulomb gas

Basically we have a free bosonic action $\frac{g}{4\pi} \int d^2 r (\partial \phi)^2$

- When $n \uparrow$, fluctuations in ϕ are smaller, so $g \uparrow$.
- For n = 2, Kosterlitz-Thouless transition to non-critical phase.

イロン イヨン イヨン イヨ

"Geometrical" version of the Coulomb gas

Basically we have a free bosonic action $\frac{g}{4\pi} \int d^2 r (\partial \phi)^2$

- When $n \uparrow$, fluctuations in ϕ are smaller, so $g \uparrow$.
- For n = 2, Kosterlitz-Thouless transition to non-critical phase.

Background electric charge

- The cylinder geometry is appropriate for transfer matrix setup.
- But winding loops then get a wrong weight $\tilde{n} = 2$.
- Correct by coupling $\Delta \phi = \phi_{top} \phi_{bottom}$ to background charge α_0 .

イロト イヨト イヨト イヨト

"Geometrical" version of the Coulomb gas

Basically we have a free bosonic action $\frac{g}{4\pi} \int d^2 r (\partial \phi)^2$

- When $n \uparrow$, fluctuations in ϕ are smaller, so $g \uparrow$.
- For n = 2, Kosterlitz-Thouless transition to non-critical phase.

Background electric charge

- The cylinder geometry is appropriate for transfer matrix setup.
- But winding loops then get a wrong weight $\tilde{n} = 2$.
- Correct by coupling $\Delta \phi = \phi_{top} \phi_{bottom}$ to background charge α_0 .

Liouville potential [Kondev 1997]

- Local weight is a periodic functional of ϕ .
- Hence expand on vertex operators $e^{i\alpha\phi}$.
- Keep only most relevant one, and require its RG marginality.
- This fixes g as a function of n.

Local operators in the CG

Electric (vertex) operators $V_{\alpha} = e^{i\alpha\phi}$

- $\langle V_{\alpha}(r_1) V_{-\alpha}(r_2) \rangle$ modifies the weight of loops separating r_1 from r_2 .
- We need electric charge neutrality (up to shifts by α_0).

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Local operators in the CG

Electric (vertex) operators $V_{lpha}={ m e}^{ilpha\phi}$

- $\langle V_{\alpha}(r_1) V_{-\alpha}(r_2) \rangle$ modifies the weight of loops separating r_1 from r_2 .
- We need electric charge neutrality (up to shifts by α_0).

Magnetic (vortex) operators \mathcal{O}_m

- $\langle \mathcal{O}_m(r_1)\mathcal{O}_{-m}(r_2)\rangle$ makes *m* defect lines run from r_1 to r_2 .
- Permits us to compute the fractal dimension of a loop, etc.

Local operators in the CG

Electric (vertex) operators $V_{lpha}={ m e}^{ilpha\phi}$

- $\langle V_{\alpha}(r_1) V_{-\alpha}(r_2) \rangle$ modifies the weight of loops separating r_1 from r_2 .
- We need electric charge neutrality (up to shifts by α_0).

Magnetic (vortex) operators \mathcal{O}_m

- $\langle \mathcal{O}_m(r_1)\mathcal{O}_{-m}(r_2)\rangle$ makes *m* defect lines run from r_1 to r_2 .
- Permits us to compute the fractal dimension of a loop, etc.

Fundamental conceptual problem in the CG construction

• Many correlators are geometrically well-defined, yet violate charge neutrality. E.g. give four different loop weights like this:

Jesper L. Jacobsen (LPTENS)

Quantum Liouville theory

- Originates from string theory / quantum gravity [Polyakov 1981].
- Original theory has $c \ge 25$, but recent work [Schomerus, Zamolodchikov, Kostov-Petkova] "tweaks" this to cover $c \le 1$.

$$\mathcal{A} = \int d^2 r \frac{\sqrt{g}}{4\pi} \left[\partial_a \phi \partial_b \phi g^{ab} + i \hat{Q} \mathcal{R} \phi + 4\pi \mu e^{-2i\hat{b}\phi} \right]$$

A .

Quantum Liouville theory

- Originates from string theory / quantum gravity [Polyakov 1981].
- Original theory has $c \ge 25$, but recent work [Schomerus, Zamolodchikov, Kostov-Petkova] "tweaks" this to cover $c \le 1$.

$$\mathcal{A} = \int d^2 r \frac{\sqrt{g}}{4\pi} \left[\partial_a \phi \partial_b \phi g^{ab} + i \hat{Q} \mathcal{R} \phi + 4\pi \mu e^{-2i\hat{b}\phi} \right]$$

- g^{ab} metric; \mathcal{R} Ricci scalar; \hat{b} real constant; and $\hat{Q} = (\hat{b}^{-1} \hat{b})$.
- The value of μ is irrelevant, as long as $\mu \neq 0$.
- Central charge $c = 1 6\hat{Q}^2 \le 1$.

・ロト ・ 同ト ・ ヨト ・ ヨ

Quantum Liouville theory

- Originates from string theory / quantum gravity [Polyakov 1981].
- Original theory has $c \ge 25$, but recent work [Schomerus, Zamolodchikov, Kostov-Petkova] "tweaks" this to cover $c \le 1$.

$$\mathcal{A} = \int d^2 r \frac{\sqrt{g}}{4\pi} \left[\partial_a \phi \partial_b \phi g^{ab} + i \hat{Q} \mathcal{R} \phi + 4\pi \mu e^{-2i\hat{b}\phi} \right]$$

- g^{ab} metric; \mathcal{R} Ricci scalar; \hat{b} real constant; and $\hat{Q} = (\hat{b}^{-1} \hat{b})$.
- The value of μ is irrelevant, as long as $\mu \neq 0$.
- Central charge $c = 1 6\hat{Q}^2 \le 1$.

Vertex operators $V_{\hat{\alpha}} \equiv e^{2\hat{\alpha}\phi}$

• Scaling exponents (conformal weights): $\Delta = \overline{\Delta} = \hat{\alpha}(\hat{\alpha} - \hat{Q})$

・ロト ・ 四ト ・ ヨト ・ ヨト

Three-point functions and structure constants

DOZZ formula [Dorn-Otto, Zamolodchikov-Zamolodchikov]

$$\langle V_{\hat{\alpha}_1}(r_1) V_{\hat{\alpha}_2}(r_2) V_{\hat{\alpha}_3}(r_3) \rangle = \hat{C}(\hat{\alpha}_1, \hat{\alpha}_2, \hat{\alpha}_3) \prod_{ij}^{-2\Delta_{ij}^k} \hat{C}(\hat{\alpha}_1, \hat{\alpha}_2, \hat{\alpha}_3) = \frac{A_{\hat{b}} \Upsilon(\hat{b} - \hat{Q} + \hat{\alpha}_{123}) \prod_{ij}^{-2\Delta_{ij}^k} \Upsilon(\hat{b} + \hat{\alpha}_{ij})}{\sqrt{\prod_{i=1}^3 \Upsilon(\hat{b} + 2\hat{\alpha}_i) \Upsilon(\hat{b} - \hat{Q} + 2\hat{\alpha}_i)}}$$

Here the $c \leq 1$ version [Schomerus, Kostov-Petkova].

< ロ > < 同 > < 回 > < 回 >

Three-point functions and structure constants

DOZZ formula [Dorn-Otto, Zamolodchikov-Zamolodchikov]

$$\left\langle V_{\hat{\alpha}_{1}}(r_{1})V_{\hat{\alpha}_{2}}(r_{2})V_{\hat{\alpha}_{3}}(r_{3})\right\rangle = \hat{C}(\hat{\alpha}_{1},\hat{\alpha}_{2},\hat{\alpha}_{3})\widetilde{\prod}r_{ij}^{-2\Delta_{ij}^{k}}$$

$$\hat{C}(\hat{\alpha}_1, \hat{\alpha}_2, \hat{\alpha}_3) = \frac{A_{\hat{b}} \Gamma(b - Q + \alpha_{123}) \prod \Gamma(b + \alpha_{ij}^{\alpha})}{\sqrt{\prod_{i=1}^3 \Upsilon(\hat{b} + 2\hat{\alpha}_i) \Upsilon(\hat{b} - \hat{Q} + 2\hat{\alpha}_i)}}$$

Here the $c \leq 1$ version [Schomerus, Kostov-Petkova].

- $\prod_{k=1}^{\infty}$ makes (*ijk*) run over the three cyclic permutations of (123).
- $\hat{\alpha}_{ij}^k \equiv \hat{\alpha}_i + \hat{\alpha}_j \hat{\alpha}_k$ and $\hat{\alpha}_{123} \equiv \hat{\alpha}_1 + \hat{\alpha}_2 + \hat{\alpha}_3$.
- $A_{\hat{b}}$ defined by the normalisation $C(\hat{\alpha}, \hat{\alpha}, 0) = 1$.

A D A D A D A

Three-point functions and structure constants

DOZZ formula [Dorn-Otto, Zamolodchikov-Zamolodchikov]

$$\left\langle V_{\hat{\alpha}_{1}}(r_{1})V_{\hat{\alpha}_{2}}(r_{2})V_{\hat{\alpha}_{3}}(r_{3})\right\rangle = \hat{C}(\hat{\alpha}_{1},\hat{\alpha}_{2},\hat{\alpha}_{3})\widetilde{\prod}r_{ij}^{-2\Delta_{ij}^{k}}$$

$$\hat{C}(\hat{\alpha}_1, \hat{\alpha}_2, \hat{\alpha}_3) = \frac{A_{\hat{b}} \Gamma(b - Q + \alpha_{123}) \prod \Gamma(b + \alpha_{\hat{j}\hat{j}})}{\sqrt{\prod_{i=1}^3 \Upsilon(\hat{b} + 2\hat{\alpha}_i) \Upsilon(\hat{b} - \hat{Q} + 2\hat{\alpha}_i)}}$$

Here the $c \leq 1$ version [Schomerus, Kostov-Petkova].

• \prod_{ij}^{∞} makes (*ijk*) run over the three cyclic permutations of (123). • $\hat{\alpha}_{ij}^{k} \equiv \hat{\alpha}_{i} + \hat{\alpha}_{j} - \hat{\alpha}_{k}$ and $\hat{\alpha}_{123} \equiv \hat{\alpha}_{1} + \hat{\alpha}_{2} + \hat{\alpha}_{3}$. • $A_{\hat{b}}$ defined by the normalisation $C(\hat{\alpha}, \hat{\alpha}, 0) = 1$. $\ln \Upsilon(x) \equiv \int_{0}^{\infty} \frac{\mathrm{d}t}{t} \left[\left(\frac{\hat{q}}{2} - x \right)^{2} \mathrm{e}^{-t} - \frac{\mathrm{sinh}^{2} \left(\frac{\hat{q}}{2} - x \right) \frac{t}{2}}{\mathrm{sinh} \frac{\hat{b}t}{2} \mathrm{sinh} \frac{t}{2\hat{b}}} \right]$

• Defined outside the range $0 < \text{Re}(x) < \hat{q}$ by functional relations.

10/17

Main results of this talk

- Geometric realisation of DOZZ for loops with modified weights.
- $\hat{C}(\hat{\alpha}_1, \hat{\alpha}_2, \hat{\alpha}_3) \neq 0$ even when charge neutrality is broken.
- Our interpretation supports / exploits this lack of charge neutrality.

Definition of our three-point function

Jesper L. Jacobsen (LPTENS)

æ

イロト イヨト イヨト イヨト

Definition of our three-point function

 $(\hat{\alpha}_1, \hat{\alpha}_2, \hat{\alpha}_3)$ linked to loop weights (n_1, n_2, n_3) by matching scaling dimensions of two-point functions: $n_i = 2 \cos \pi e_i$ with $\hat{\alpha}_i = \frac{\hat{Q}}{2} + \frac{e_i}{2\hat{h}}$.

Jesper L. Jacobsen (LPTENS)

Three-point functions

ENS-Lyon, 23 October 2017 12 / 17

< ∃ ►

Definition of our three-point function

 $(\hat{\alpha}_1, \hat{\alpha}_2, \hat{\alpha}_3)$ linked to loop weights (n_1, n_2, n_3) by matching scaling dimensions of two-point functions: $n_i = 2 \cos \pi e_i$ with $\hat{\alpha}_i = \frac{\hat{Q}}{2} + \frac{e_i}{2\hat{h}}$.

Convenient reformulation on the cylinder

• Take $r_1 \rightarrow -i\infty$ and $r_3 \rightarrow +i\infty$: No loop can surround r_1 or r_3 .

• Loop weight then depends on [#traversals mod 2] of C_{12} and C_{23} .

12/17

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Z_{ni,nj,nk}(*r*₁, *r*₂, *r*₃) ≡ *Z_{ijk}* defined by giving modified loop weights
Set *n* = *n*₀ for bulk loops.

$$\hat{C}(\hat{\alpha}_{1},\hat{\alpha}_{2},\hat{\alpha}_{3}) = Z_{123} \sqrt{Z_{000} \frac{Z_{011}}{Z_{101} Z_{110}} \frac{Z_{202}}{Z_{220} Z_{022}} \frac{Z_{330}}{Z_{033} Z_{303}}}$$

• This is independent of non-universal factors in operator definitions.

Numerical check

- $Z_{n_i,n_j,n_k}(r_1, r_2, r_3)$ obtained from transfer matrix on the cylinder.
- Then form the universal ratio $\hat{C}(\hat{\alpha}_1, \hat{\alpha}_2, \hat{\alpha}_3)$

(4) (5) (4) (5)

____ ▶

Numerical check

Z_{ni,nj,nk}(*r*₁, *r*₂, *r*₃) obtained from transfer matrix on the cylinder.
Then form the universal ratio C(â₁, â₂, â₃)

 $\hat{C}(\hat{\alpha},\hat{\alpha},\hat{\alpha})$ as a function of $n_1 = n_2 = n_3$, in the case n = 1.

V_0 is not the identity operator!

- Taking $\hat{\alpha} \to 0$ in $V_{\hat{\alpha}} \equiv e^{2\hat{\alpha}\phi}$ gives of course $\Delta = \bar{\Delta} = 0$.
- Meanwhile $\hat{\alpha}_3 = 0$ implies $(n_1, n_2, n_3) = (n_1, n_2, n)$:

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

V_0 is not the identity operator!

- Taking $\hat{\alpha} \to 0$ in $V_{\hat{\alpha}} \equiv e^{2\hat{\alpha}\phi}$ gives of course $\Delta = \bar{\Delta} = 0$.
- Meanwhile $\hat{\alpha}_3 = 0$ implies $(n_1, n_2, n_3) = (n_1, n_2, n)$:

- Weight of loop around r₁ depends on whether it also surrounds r₃.
- V_0 is an indicator / marking operator (some analogy to SLE_{κ}).

Two-point functions are orthogonal... up to subtleties

- CFT result [Polyakov 1970]: $\langle \Phi(r_1)\Phi(r_2)\rangle = \frac{\delta(\Delta_{\Phi_1},\Delta_{\Phi_2})}{|r_1-r_2|^{\Delta_{\Phi_1}+\Delta_{\Phi_2}}}$
- Indeed $\hat{C}(\hat{\alpha}, \hat{\alpha}, 0) = 1$, but $\hat{C}(\hat{\alpha}, \hat{\beta}, 0) \neq 0$ even when $\hat{\alpha} \neq \hat{\beta}$.

Two-point functions are orthogonal... up to subtleties

• CFT result [Polyakov 1970]: $\langle \Phi(r_1)\Phi(r_2)\rangle = \frac{\delta(\Delta_{\Phi_1},\Delta_{\Phi_2})}{|r_1-r_2|^{\Delta_{\Phi_1}+\Delta_{\Phi_2}}}$

• Indeed $\hat{C}(\hat{\alpha}, \hat{\alpha}, 0) = 1$, but $\hat{C}(\hat{\alpha}, \hat{\beta}, 0) \neq 0$ even when $\hat{\alpha} \neq \hat{\beta}$.

Orthogonality catastrophe [Anderson 1967]

- Consider the overlap (Ω₂|Ω₁) of two XXX ground states with different twists (take n = 2).
- $\langle \Omega_2 | \Omega_1 \rangle \propto Z_{n_1,n_2,n_3}(r_1,r_2,r_3)$ with $\hat{\alpha}_3 = \hat{\alpha}_1 + \hat{\alpha}_2$.
- This vanishes as $L^{-\text{const}\times(\alpha_1-\alpha_2)^2}$ with the size *L* of the chain.

Two-point functions are orthogonal... up to subtleties

• CFT result [Polyakov 1970]: $\langle \Phi(r_1)\Phi(r_2)\rangle = \frac{\delta(\Delta_{\Phi_1},\Delta_{\Phi_2})}{|r_1-r_2|^{\Delta_{\Phi_1}+\Delta_{\Phi_2}}}$

• Indeed $\hat{C}(\hat{\alpha}, \hat{\alpha}, 0) = 1$, but $\hat{C}(\hat{\alpha}, \hat{\beta}, 0) \neq 0$ even when $\hat{\alpha} \neq \hat{\beta}$.

Orthogonality catastrophe [Anderson 1967]

 Consider the overlap (Ω₂|Ω₁) of two XXX ground states with different twists (take n = 2).

•
$$\langle \Omega_2 | \Omega_1 \rangle \propto Z_{n_1,n_2,n_3}(r_1,r_2,r_3)$$
 with $\hat{\alpha}_3 = \hat{\alpha}_1 + \hat{\alpha}_2$.

• This vanishes as $L^{-const \times (\alpha_1 - \alpha_2)^2}$ with the size *L* of the chain.

However this drops out of the universal ratio

The result is $\hat{C}(\hat{\alpha}_1, \hat{\alpha}_2, \hat{\alpha}_1 + \hat{\alpha}_2) = 1$.

Application to Fortuin-Kasteleyn clusters

- Previously discussed by [Delfino-Viti].
- Numerical cheks in [Picco-Santachiara-Viti-Delfino].
- Take $n_1 = n_2 = n_3 = 0$ and $n = \sqrt{Q}$ for *Q*-state Potts model.
- Then $\hat{C} \propto \mathbb{P}(r_1, r_2, r_3 \in \text{same FK cluster})$.

< ロ > < 同 > < 回 > < 回 >

Application to Fortuin-Kasteleyn clusters

- Previously discussed by [Delfino-Viti].
- Numerical cheks in [Picco-Santachiara-Viti-Delfino].
- Take $n_1 = n_2 = n_3 = 0$ and $n = \sqrt{Q}$ for *Q*-state Potts model.
- Then $\hat{C} \propto \mathbb{P}(r_1, r_2, r_3 \in \text{same FK cluster})$.

What about $\mathbb{P}(r_1, r_2, r_3 \in \text{same loop})$?

- We need to change the cluster-inserting operator $\phi_{1/2,0} \times \phi_{1/2,0}$ into the loop-marking operator $\phi_{0,1} \times \phi_{0,1}$.
- But matching scaling dimensions, the DOZZ formula diverges.
- However the numerical measurement is perfectly finite!
- Seemingly DOZZ covers only electric-type operators.

17/17

< ロ > < 同 > < 回 > < 回 >