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Collaborators

Collaborators for this subject:
Yacine Ikhlef
Hubert Saleur

More general context includes also four-point functions:
See Hubert Saleur’s talk (after this one)
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Computing correlation functions

Main purpose of statistical physics and statistical field theory.

Several possible techniques (mainly in two dimensions):
Integrability of lattice models.
Integrability in the continuum limit.
Solvable (conformal) field theories.

Several different scopes:
Just leading asymptotics (power laws, critical exponents).
Refinements (structure constants, scaling corrections, logarithms).
Continuum limit, or lattice models (finite separation between points).
Local or non-local observables.
Bulk or boundary models.
One, two, three, four, . . . , N-point functions.

This talk
Three-point functions (asymptotics including structure constants).
Bulk theories with non-local observables (clusters and loops).
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Coulomb gas and loop models

Loop models in have been extensively studied in two dimensions
Typical example (which is integrable) [Blöte-Nienhuis 1989]:

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9

Non-local weight of n per closed loop. Potts model: ρ8, ρ9 and n =
√

Q.

Coulomb gas approach (1980s)
Orient each loop independently.
Set n = eiγ + e−iγ = 2 cos γ, giving weight e±iγ to each orientation.
Make weights local: eiγ α

2π when a loop turns an angle α to the left.
Oriented loops are level lines of a (compactified) bosonic field φ.
Critical exponents etc can be computed within this field theory.
Rigorous (≈ equivalent) alternative: SLEκ, CLEκ [Schramm,. . . ]
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Coulomb gas and N = 3,4, . . . correlation functions

Observables are identified with certain CFT fields φ.
Often φr ,s ∈ Kac table, with r , s ∈ N.

In that case analytical progress is possible
Indices r , s are interpreted as “charges” [Dotsenko-Fateev].

Correlation functions 6= 0 only if charge-neutral (after “screening”).
Integral representation. Monodromy of conformal blocks.

Moreover, singular state at level rs.
Then 〈φr ,s · · · 〉 satisfies an ODE (solvable for small rs, e.g. 2)

Jesper L. Jacobsen (LPTENS) Three-point functions ENS-Lyon, 23 October 2017 5 / 17



Coulomb gas and N = 3,4, . . . correlation functions

Observables are identified with certain CFT fields φ.
Often φr ,s ∈ Kac table, with r , s ∈ N.

In that case analytical progress is possible
Indices r , s are interpreted as “charges” [Dotsenko-Fateev].

Correlation functions 6= 0 only if charge-neutral (after “screening”).
Integral representation. Monodromy of conformal blocks.

Moreover, singular state at level rs.
Then 〈φr ,s · · · 〉 satisfies an ODE (solvable for small rs, e.g. 2)

Jesper L. Jacobsen (LPTENS) Three-point functions ENS-Lyon, 23 October 2017 5 / 17



What about geometrical observables (loops, clusters)?

Boundary case
φ1,2 inserts a curve (loop = hull of cluster) at the boundary.
4-point fcts (4 bdry, or 2 bdry + 1 bulk) satisfy hypergeom. ODE.
Two nice applications:

Proba that percolation cluster connects two arcs of a circle [Cardy].
Left-passage probability of SLEκ curve [Schramm].

Bulk case: More tricky
φ0,1 × φ0,1 marks a bulk point of a loop [Saleur-Duplantier].
φ1/2,0 × φ1/2,0 inserts a bulk cluster.
Challenges: Outside Kac table, and indices /∈ N.

No differential equations.
Bulk fusion of such fields: “in progress” [Gainutdinov, JJ, Saleur].
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“Geometrical” version of the Coulomb gas

Basically we have a free bosonic action g
4π

∫
d2r(∂φ)2

When n ↑, fluctuations in φ are smaller, so g ↑.
For n = 2, Kosterlitz-Thouless transition to non-critical phase.

Background electric charge
The cylinder geometry is appropriate for transfer matrix setup.
But winding loops then get a wrong weight ñ = 2.
Correct by coupling ∆φ = φtop − φbottom to background charge α0.

Liouville potential [Kondev 1997]
Local weight is a periodic functional of φ.
Hence expand on vertex operators eiαφ.
Keep only most relevant one, and require its RG marginality.
This fixes g as a function of n.
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Local operators in the CG

Electric (vertex) operators Vα = eiαφ

〈Vα(r1)V−α(r2)〉 modifies the weight of loops separating r1 from r2.
We need electric charge neutrality (up to shifts by α0).

Magnetic (vortex) operators Om

〈Om(r1)O−m(r2)〉 makes m defect lines run from r1 to r2.
Permits us to compute the fractal dimension of a loop, etc.

Fundamental conceptual problem in the CG construction
Many correlators are geometrically well-defined, yet violate charge
neutrality. E.g. give four different loop weights like this:

r1 r2
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Quantum Liouville theory

Originates from string theory / quantum gravity [Polyakov 1981].
Original theory has c ≥ 25, but recent work [Schomerus, Zamolodchikov,

Kostov-Petkova] “tweaks” this to cover c ≤ 1.

A =

∫
d2r
√

g
4π

[
∂aφ∂bφgab + iQ̂Rφ+ 4πµe−2i b̂φ

]

gab metric; R Ricci scalar; b̂ real constant; and Q̂ = (b̂−1 − b̂).
The value of µ is irrelevant, as long as µ 6= 0.
Central charge c = 1− 6Q̂2 ≤ 1.

Vertex operators Vα̂ ≡ e2α̂φ

Scaling exponents (conformal weights): ∆ = ∆̄ = α̂(α̂− Q̂)

Jesper L. Jacobsen (LPTENS) Three-point functions ENS-Lyon, 23 October 2017 9 / 17



Quantum Liouville theory

Originates from string theory / quantum gravity [Polyakov 1981].
Original theory has c ≥ 25, but recent work [Schomerus, Zamolodchikov,

Kostov-Petkova] “tweaks” this to cover c ≤ 1.

A =

∫
d2r
√

g
4π

[
∂aφ∂bφgab + iQ̂Rφ+ 4πµe−2i b̂φ

]
gab metric; R Ricci scalar; b̂ real constant; and Q̂ = (b̂−1 − b̂).
The value of µ is irrelevant, as long as µ 6= 0.
Central charge c = 1− 6Q̂2 ≤ 1.

Vertex operators Vα̂ ≡ e2α̂φ

Scaling exponents (conformal weights): ∆ = ∆̄ = α̂(α̂− Q̂)

Jesper L. Jacobsen (LPTENS) Three-point functions ENS-Lyon, 23 October 2017 9 / 17



Quantum Liouville theory

Originates from string theory / quantum gravity [Polyakov 1981].
Original theory has c ≥ 25, but recent work [Schomerus, Zamolodchikov,

Kostov-Petkova] “tweaks” this to cover c ≤ 1.

A =

∫
d2r
√

g
4π

[
∂aφ∂bφgab + iQ̂Rφ+ 4πµe−2i b̂φ

]
gab metric; R Ricci scalar; b̂ real constant; and Q̂ = (b̂−1 − b̂).
The value of µ is irrelevant, as long as µ 6= 0.
Central charge c = 1− 6Q̂2 ≤ 1.

Vertex operators Vα̂ ≡ e2α̂φ

Scaling exponents (conformal weights): ∆ = ∆̄ = α̂(α̂− Q̂)

Jesper L. Jacobsen (LPTENS) Three-point functions ENS-Lyon, 23 October 2017 9 / 17



Three-point functions and structure constants

DOZZ formula [Dorn-Otto, Zamolodchikov-Zamolodchikov]〈
Vα̂1(r1)Vα̂2(r2)Vα̂3(r3)

〉
= Ĉ(α̂1, α̂2, α̂3)

∏̃
r
−2∆k

ij
ij

Ĉ(α̂1, α̂2, α̂3) =
Ab̂Υ(b̂ − Q̂ + α̂123)

∏̃
Υ(b̂ + α̂k

ij )√∏3
i=1 Υ(b̂ + 2α̂i)Υ(b̂ − Q̂ + 2α̂i)

Here the c ≤ 1 version [Schomerus, Kostov-Petkova].

∏̃
makes (ijk) run over the three cyclic permutations of (123).

α̂k
ij ≡ α̂i + α̂j − α̂k and α̂123 ≡ α̂1 + α̂2 + α̂3.

Ab̂ defined by the normalisation C(α̂, α̂,0) = 1.

ln Υ(x) ≡
∫ ∞

0

dt
t

( q̂
2
− x

)2

e−t −
sinh2 ( q̂

2 − x
) t

2

sinh b̂t
2 sinh t

2b̂


Defined outside the range 0 < Re(x) < q̂ by functional relations.
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= Ĉ(α̂1, α̂2, α̂3)

∏̃
r
−2∆k

ij
ij
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Main results of this talk
Geometric realisation of DOZZ for loops with modified weights.
Ĉ(α̂1, α̂2, α̂3) 6= 0 even when charge neutrality is broken.
Our interpretation supports / exploits this lack of charge neutrality.
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Definition of our three-point function

r1

r2

r3

C12 C23

(α̂1, α̂2, α̂3) linked to loop weights (n1,n2,n3) by matching scaling
dimensions of two-point functions: ni = 2 cosπei with α̂i = Q̂

2 + ei
2b̂

.

Convenient reformulation on the cylinder
Take r1 → −i∞ and r3 → +i∞: No loop can surround r1 or r3.
Loop weight then depends on [#traversals mod 2] of C12 and C23.
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Extracting Ĉ(α̂1, α̂2, α̂3) from the lattice model

Zni ,nj ,nk (r1, r2, r3) ≡ Zijk defined by giving modified loop weights
Set n = n0 for bulk loops.

Ĉ(α̂1, α̂2, α̂3) = Z123

√
Z000

Z011

Z101Z110

Z202

Z220Z022

Z330

Z033Z303

This is independent of non-universal factors in operator definitions.
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Numerical check

Zni ,nj ,nk (r1, r2, r3) obtained from transfer matrix on the cylinder.

Then form the universal ratio Ĉ(α̂1, α̂2, α̂3)

-1 0 1 2 3 4
ni

-1

-0.5

0

0.5

1

C
(α

,α
,α

)

L=4
L=5
L=6
L=7
L=8
L=9
L=10
Exact

Dense O(n) model

-1 0 1 2 3 4
ni

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Dilute O(n) model

Ĉ(α̂, α̂, α̂) as a function of n1 = n2 = n3, in the case n = 1.
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V0 is not the identity operator!

Taking α̂→ 0 in Vα̂ ≡ e2α̂φ gives of course ∆ = ∆̄ = 0.
Meanwhile α̂3 = 0 implies (n1,n2,n3) = (n1,n2,n):

r1

r2

r3

C12 C23

Weight of loop around r1 depends on whether it also surrounds r3.
V0 is an indicator / marking operator (some analogy to SLEκ).
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Two-point functions are orthogonal. . . up to subtleties

CFT result [Polyakov 1970]: 〈Φ(r1)Φ(r2)〉 =
δ(∆Φ1 ,∆Φ2 )∣∣r1−r2

∣∣∆Φ1
+∆Φ2

Indeed Ĉ(α̂, α̂,0) = 1, but Ĉ(α̂, β̂,0) 6= 0 even when α̂ 6= β̂.

Orthogonality catastrophe [Anderson 1967]
Consider the overlap 〈Ω2|Ω1〉 of two XXX ground states with
different twists (take n = 2).
〈Ω2|Ω1〉 ∝ Zn1,n2,n3(r1, r2, r3) with α̂3 = α̂1 + α̂2.

This vanishes as L−const×(α1−α2)2
with the size L of the chain.

However this drops out of the universal ratio

The result is Ĉ(α̂1, α̂2, α̂1 + α̂2) = 1.
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∣∣∆Φ1
+∆Φ2

Indeed Ĉ(α̂, α̂,0) = 1, but Ĉ(α̂, β̂,0) 6= 0 even when α̂ 6= β̂.

Orthogonality catastrophe [Anderson 1967]
Consider the overlap 〈Ω2|Ω1〉 of two XXX ground states with
different twists (take n = 2).
〈Ω2|Ω1〉 ∝ Zn1,n2,n3(r1, r2, r3) with α̂3 = α̂1 + α̂2.

This vanishes as L−const×(α1−α2)2
with the size L of the chain.

However this drops out of the universal ratio

The result is Ĉ(α̂1, α̂2, α̂1 + α̂2) = 1.
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Application to Fortuin-Kasteleyn clusters

Previously discussed by [Delfino-Viti].

Numerical cheks in [Picco-Santachiara-Viti-Delfino].

Take n1 = n2 = n3 = 0 and n =
√

Q for Q-state Potts model.
Then Ĉ ∝ P(r1, r2, r3 ∈ same FK cluster).

What about P(r1, r2, r3 ∈ same loop)?
We need to change the cluster-inserting operator φ1/2,0 × φ1/2,0
into the loop-marking operator φ0,1 × φ0,1.
But matching scaling dimensions, the DOZZ formula diverges.
However the numerical measurement is perfectly finite!
Seemingly DOZZ covers only electric-type operators.
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