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Collaborators

Collaborators for this subject:
@ Yacine Ikhlef
@ Hubert Saleur

More general context includes also four-point functions:
@ See Hubert Saleur’s talk (after this one)
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Computing correlation functions

@ Main purpose of statistical physics and statistical field theory.
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Computing correlation functions

@ Main purpose of statistical physics and statistical field theory.
@ Several possible techniques (mainly in two dimensions):

o Integrability of lattice models.
o Integrability in the continuum limit.
e Solvable (conformal) field theories.
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Computing correlation functions

@ Main purpose of statistical physics and statistical field theory.
@ Several possible techniques (mainly in two dimensions):

o Integrability of lattice models.

o Integrability in the continuum limit.

@ Solvable (conformal) field theories.

@ Several different scopes:

Just leading asymptotics (power laws, critical exponents).
Refinements (structure constants, scaling corrections, logarithms).
Continuum limit, or lattice models (finite separation between points).
Local or non-local observables.

Bulk or boundary models.

One, two, three, four, ..., N-point functions.
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Computing correlation functions

@ Main purpose of statistical physics and statistical field theory.
@ Several possible techniques (mainly in two dimensions):

o Integrability of lattice models.

o Integrability in the continuum limit.

@ Solvable (conformal) field theories.

@ Several different scopes:

Just leading asymptotics (power laws, critical exponents).
Refinements (structure constants, scaling corrections, logarithms).
Continuum limit, or lattice models (finite separation between points).
Local or non-local observables.

Bulk or boundary models.

One, two, three, four, ..., N-point functions.

@ Three-point functions (asymptotics including structure constants).
@ Bulk theories with non-local observables (clusters and loops).
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Coulomb gas and loop models

Loop models in have been extensively studied in two dimensions

Typical example (which is integrable) [Blé')te-Nienhuis 1989]:

pr p2  ps  ps  ps ps pT s
Non-local weight of n per closed loop. Potts model: pg, pg and n = v/ Q.

v
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Coulomb gas and loop models

Loop models in have been extensively studied in two dimensions

Typical example (which is integrable) [Blé')te-Nienhuis 1989]:

pr p2  ps  ps  ps ps pT s
Non-local weight of n per closed loop. Potts model: pg, pg and n = v/ Q.

4

Coulomb gas approach (1980s)
@ Orient each loop independently.

@ Set n=¢/" + e = 2cos~, giving weight e+ to each orientation.
@ Make weights local: ¢"'z= when a loop turns an angle « to the left.
@ Oriented loops are level lines of a (compactified) bosonic field ¢.
@ Critical exponents etc can be computed within this field theory.

@ Rigorous (~ equivalent) alternative: SLE,, CLE, [Schramm,...]

v
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Coulomb gas and N = 3,4, ... correlation functions

@ Observables are identified with certain CFT fields ¢.
@ Often ¢, s € Kac table, with r, s € N.
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Coulomb gas and N = 3,4, ... correlation functions

@ Observables are identified with certain CFT fields ¢.
@ Often ¢, s € Kac table, with r, s € N.

In that case analytical progress is possible

@ Indices r, s are interpreted as “charges” [Dotsenko-Fateev].

e Correlation functions = 0 only if charge-neutral (after “screening”).
o Integral representation. Monodromy of conformal blocks.

@ Moreover, singular state at level rs.
e Then (¢, s---) satisfies an ODE (solvable for small rs, e.g. 2)
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What about geometrical observables (loops, clusters)?

Boundary case

@ ¢4 inserts a curve (loop = hull of cluster) at the boundary.
@ 4-point fcts (4 bdry, or 2 bdry + 1 bulk) satisfy hypergeom. ODE.

@ Two nice applications:

e Proba that percolation cluster connects two arcs of a circle [Cardy].
o Left-passage probability of SLE,. curve [Schramm].
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What about geometrical observables (loops, clusters)?

Boundary case
@ ¢4 inserts a curve (loop = hull of cluster) at the boundary.
@ 4-point fcts (4 bdry, or 2 bdry + 1 bulk) satisfy hypergeom. ODE.

@ Two nice applications:

e Proba that percolation cluster connects two arcs of a circle [Cardy].
o Left-passage probability of SLE,. curve [Schramm].

| A\

Bulk case: More tricky
@ ¢p1 X ¢o 1 marks a bulk point of a loop [Saleur-Duplantier].
@ P1/20 X P1/2,0 inserts a bulk cluster.

@ Challenges: Outside Kac table, and indices ¢ N.

o No differential equations.
o Bulk fusion of such fields: “in progress” [Gainutdinov, JJ, Saleur].

v
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“Geometrical” version of the Coulomb gas

Basically we have a free bosonic action Z [ d?r(9¢)?

@ When n 1, fluctuations in ¢ are smaller, so g 7.
@ For n = 2, Kosterlitz-Thouless transition to non-critical phase.
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“Geometrical” version of the Coulomb gas

Basically we have a free bosonic action Z [ d?r(9¢)?

@ When n 1, fluctuations in ¢ are smaller, so g 7.
@ For n = 2, Kosterlitz-Thouless transition to non-critical phase.

v

Background electric charge

@ The cylinder geometry is appropriate for transfer matrix setup.
@ But winding loops then get a wrong weight n = 2.
@ Correct by coupling A¢ = ¢rop — Pbotiom t0 background charge ap.

v
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“Geometrical” version of the Coulomb gas

Basically we have a free bosonic action Z [ d?r(9¢)?

@ When n 1, fluctuations in ¢ are smaller, so g 7.
@ For n = 2, Kosterlitz-Thouless transition to non-critical phase.

| N\

Background electric charge
@ The cylinder geometry is appropriate for transfer matrix setup.
@ But winding loops then get a wrong weight n = 2.
@ Correct by coupling A¢ = ¢p — Pbotiom t0 background charge ag.

v

Liouville potential [Kondev 1997]
@ Local weight is a periodic functional of ¢.

@ Hence expand on vertex operators e/,
@ Keep only most relevant one, and require its RG marginality.
@ This fixes g as a function of n.
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Local operators in the CG

Electric (vertex) operators V,, = e/®®
o (V. (r1)V_o(r)) modifies the weight of loops separating ry from r,.
@ We need electric charge neutrality (up to shifts by ag).
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Local operators in the CG

Electric (vertex) operators V,, = "¢
o (V.(r)V_a(r2)) modifies the weight of loops separating ry from r».
@ We need electric charge neutrality (up to shifts by ag).

Magnetic (vortex) operators O,
@ (Om(r1)O_m(r2)) makes m defect lines run from ry to r».

@ Permits us to compute the fractal dimension of a loop, etc.
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Local operators in the CG

Electric (vertex) operators V,, = "¢
@ (Va(r)V_a(r2)) modifies the weight of loops separating ry from ry.
@ We need electric charge neutrality (up to shifts by «g).

Magnetic (vortex) operators O,

@ (Om(r1)O_m(r2)) makes m defect lines run from ry to r».

@ Permits us to compute the fractal dimension of a loop, etc.

Fundamental conceptual problem in the CG construction

@ Many correlators are geometrically well-defined, yet violate charge
neutrality. E.g. give four different loop weights like this:

v
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Quantum Liouville theory

@ Originates from string theory / quantum gravity [Polyakov 1981].

@ Original theory has ¢ > 25, but recent work (schomerus, zamolodehikov,
Kostov-Petkova]  tWeaks” this to cover ¢ <1.

A= / d%ﬁ [aa¢ab¢gab +iQRe + 47rue_2i5¢]
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Quantum Liouville theory

@ Originates from string theory / quantum gravity [Polyakov 1981].

@ Original theory has ¢ > 25, but recent work (schomerus, zamolodehikov,
Kostov-Petkova]  tWeaks” this to cover ¢ <1.

A= \F [ 0adOpdg? + iIQRG + dmpe” 2’b¢]

@ 92 metric; R Ricci scalar; b real constant; and Q = (b~1 — b).
@ The value of y is irrelevant, as long as i # 0.

@ Central charge c=1—6Q2 < 1.
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Quantum Liouville theory

@ Originates from string theory / quantum gravity [Polyakov 1981].

@ Original theory has ¢ > 25, but recent work (schomerus, zamolodehikov,
Kostov-Petkova]  tWeaks” this to cover ¢ <1.

A= \f [ 0appp9?® + IQR ¢ + dmpie™ 2"’¢]
@ 92 metric; R Ricci scalar; b real constant; and Q = (b~1 — b).
@ The value of y is irrelevant, as long as i # 0.
@ Central charge c=1—6Q2 < 1.

Vertex operators V,; = ¢

@ Scaling exponents (conformal weights): A = A = &4(& — @)
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Three-point functions and structure constants

DOZZ formula [Dorn-Otto, Zamolodchikov-Zamolodchikov]
2 — _2AK
(Viay (1) Vs, (12) Vs (13)) = C(01, G2, 63) [ [ r;
) AsT(B— Q + d123)[TT (b + k)
C(&1, Go,a3) = = —
VIT T(b+24)T(b— Q + 24))
Here the ¢ < 1 version [Schomerus, Kostov-Petkoval.
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Three-point functions and structure constants

DOZZ formula [Dorn-Otto, Zamolodchikov-Zamolodchikov]
(Vay (r1) Vay(r2) Viay(13)) = C(&1, dz, 43) Hf,/
N . ABT(b— Q+@123)HT(b+é\élj)

C(C,\\(1,642,0é3) = 3 N N N
VIT T(b+24)T(b— Q + 24))
Here the ¢ < 1 version [Schomerus, Kostov-Petkoval.

Ak

° f[ makes (/jk) run over the three cyclic permutations of (123).

° a’;:a,+a, &k and Gqo3 = &1 + G2 + As.

@ Aj; defined by the normalisation C(&, &,0) = 1.
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Three-point functions and structure constants

DOZZ formula [Dorn-Otto, Zamolodchikov-Zamolodchikov]
(Vay (r1) Vay(r2) Viay(13)) = C(&1, dz, 43) Hf,/
N . ABT(b— Q+@123)HT(b+é\élj)

C(&1, Go,a3) = = —
VIT T(b+24)T(b— Q + 24))
Here the ¢ < 1 version [Schomerus, Kostov-Petkoval.

Ak

° f[ makes (/jk) run over the three cyclic permutations of (123).
© 4 = 4;+ & — ax and dyg = G4 + Gz + as.

@ Aj; defined by the normalisation C(&, &,0) = 1.

o s 2 . 5
0 = 4] (3 x) et SN
A sinh & sinh -

@ Defined outside the range 0 < Re(x) < g by functional relations.
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Main results of this talk

@ Geometric realisation of DOZZ for loops with modified weights.
@ C(é4, &, &3) # 0 even when charge neutrality is broken.
@ Our interpretation supports / exploits this lack of charge neutrality.
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Definition of our three-point function
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Definition of our three-point function

(&4, a2, ag) linked to loop weights (n4, no, n3) by matching scaling
dimensions of two-point functions: n; = 2 cos wre; with &; = g + 2%’)
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Definition of our three-point function

(&4, a2, ag) linked to loop weights (n4, no, n3) by matching scaling
dimensions of two-point functions: n; = 2 cos wre; with &; = g + 2%’)

Convenient reformulation on the cylinder
@ Take r — —ioco and r3 — +ioco: No loop can surround rq or rs.
@ Loop weight then depends on [#traversals mod 2] of Cy2 and Cos.
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Extracting é(c% , Gz, G3) from the lattice model

@ Zy n.n (11, 12, 13) = Zj defined by giving modified loop weights
@ Set n = ny for bulk loops.

Zo1 1 2202 Z330
Z101£110 Z2202022 £0334303

C(G1, G2, G3) = Zia \/Zooo

@ This is independent of non-universal factors in operator definitions.
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Numerical check

® Zy, n.n (11, 12, 13) obtained from transfer matrix on the cylinder.

@ Then form the universal ratio C(a1, &z, &3)
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Numerical check

® Zy, n.n (11, 12, 13) obtained from transfer matrix on the cylinder.

@ Then form the universal ratio C(a1, &z, &3)

Dense O(n) model Dilute O(n) model
L [T T
05— -
t —L=4 098}
— L=5
~ — L=6
§ oL —L=7 | ] 097
s L=8
L L=9 096
L L=10
[ — Exact 095
05 -4
0941
P I I IR Y NN (PP
1 0 1 2 3 4 1

C(a, &, &) as a function of ny = n, = ng, in the case n = 1.
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Vo is not the identity operator!

@ Taking & — 0in V; = €2%¢ gives of course A = A = 0.
@ Meanwhile a4z = 0 implies (ny, N2, 113) = (N4, N2, N):
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Vo is not the identity operator!

@ Taking & — 0in V; = €2%¢ gives of course A = A = 0.
@ Meanwhile a4z = 0 implies (ny, N2, 113) = (N4, N2, N):

@ Weight of loop around r; depends on whether it also surrounds rs.
@ V) is an indicator / marking operator (some analogy to SLE,).

Jesper L. Jacobsen (LPTENS) Three-point functions ENS-Lyon, 23 October 2017 15/17



Two-point functions are orthogonal. . . up to subtleties

5(Aoy,D0,)
’A"H +ho,

@ CFT result [Polyakov 1970]: (®(r1)®(r2)) =

‘ﬁ*fz

@ Indeed C(&,4,0) = 1, but C(&, 3,0) # 0 even when & # .
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Two-point functions are orthogonal. . . up to subtleties

5(Aoy,D0,)
’A"H +ho,

@ CFT result [Polyakov 1970]: (®(r1)®(r2)) =

‘ﬁ*fz

@ Indeed C(&,4,0) = 1, but C(&, 3,0) # 0 even when & # .

Orthogonality catastrophe [Anderson 1967]

@ Consider the overlap (€22|€2) of two XXX ground states with
different twists (take n = 2).

) (Qg’Q1> X Z,,1,,,27,73(r1,r2, I’3) with &3 = &1 + ao.

@ This vanishes as L—omt<(e1—e2)? with the size L of the chain.
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Two-point functions are orthogonal. . . up to subtleties

5(Aoy,D0,)
Loy e,

@ CFT result [Polyakov 1970]: (®(r1)®(r2)) =

‘ﬁ*l’g‘

@ Indeed C(&,4,0) = 1, but C(&, 3,0) # 0 even when & # .

Orthogonality catastrophe [Anderson 1967]

@ Consider the overlap (€22|€2) of two XXX ground states with
different twists (take n = 2).

) <92’Q1> X Z,,1,,,27,73(r1,r2, I’3) with &3 = &1 + ao.

@ This vanishes as L—omt<(e1—e2)? with the size L of the chain.

However this drops out of the universal ratio

The result is C(é\q , G, Gy + 6[2) =1.
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Application to Fortuin-Kasteleyn clusters

@ Previously discussed by [Delfino-Viti].
@ Numerical cheks in [Picco-Santachiara-Viti-Delfino].

@ Take ny = n, = n3 = 0 and n = v/Q for Q-state Potts model.
@ Then C P(ry, ro, r3 € same FK cluster).
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Application to Fortuin-Kasteleyn clusters

@ Previously discussed by [Delfino-Viti].
@ Numerical cheks in [Picco-Santachiara-Viti-Delfino].

@ Take ny = n, = n3 = 0 and n = v/Q for Q-state Potts model.
@ Then C P(ry, ro, r3 € same FK cluster).

What about P(ry, 12, r3 € same loop)?

@ We need to change the cluster-inserting operator ¢1,29 x ¢1/20
into the loop-marking operator ¢q 1 X ¢ 1.

@ But matching scaling dimensions, the DOZZ formula diverges.
@ However the numerical measurement is perfecily finite!
@ Seemingly DOZZ covers only electric-type operators.
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