Three-point functions in Liouville theory and conformal loop ensembles

Jesper L. Jacobsen ${ }^{1,2}$

${ }^{1}$ Laboratoire de Physique Théorique, École Normale Supérieure, Paris
${ }^{2}$ Université Pierre et Marie Curie, Paris

Correlation functions of quantum integrable systems and beyond, ENS-Lyon, 23 October 2017

Collaborators

Collaborators for this subject:

- Yacine Ikhlef
- Hubert Saleur

More general context includes also four-point functions:

- See Hubert Saleur's talk (after this one)

Computing correlation functions

- Main purpose of statistical physics and statistical field theory.

Computing correlation functions

- Main purpose of statistical physics and statistical field theory.
- Several possible techniques (mainly in two dimensions):
- Integrability of lattice models.
- Integrability in the continuum limit.
- Solvable (conformal) field theories.

Computing correlation functions

- Main purpose of statistical physics and statistical field theory.
- Several possible techniques (mainly in two dimensions):
- Integrability of lattice models.
- Integrability in the continuum limit.
- Solvable (conformal) field theories.
- Several different scopes:
- Just leading asymptotics (power laws, critical exponents).
- Refinements (structure constants, scaling corrections, logarithms).
- Continuum limit, or lattice models (finite separation between points).
- Local or non-local observables.
- Bulk or boundary models.
- One, two, three, four, \ldots, N-point functions.

Computing correlation functions

- Main purpose of statistical physics and statistical field theory.
- Several possible techniques (mainly in two dimensions):
- Integrability of lattice models.
- Integrability in the continuum limit.
- Solvable (conformal) field theories.
- Several different scopes:
- Just leading asymptotics (power laws, critical exponents).
- Refinements (structure constants, scaling corrections, logarithms).
- Continuum limit, or lattice models (finite separation between points).
- Local or non-local observables.
- Bulk or boundary models.
- One, two, three, four, \ldots, N-point functions.

This talk

- Three-point functions (asymptotics including structure constants).
- Bulk theories with non-local observables (clusters and loops).

Coulomb gas and loop models

Loop models in have been extensively studied in two dimensions
Typical example (which is integrable) [Blöte-Nienhuis 1989]:

Non-local weight of n per closed loop. Potts model: ρ_{8}, ρ_{9} and $n=\sqrt{Q}$.

Coulomb gas and loop models

Loop models in have been extensively studied in two dimensions
Typical example (which is integrable) [Blöte-Nienhuis 1989]:

Non-local weight of n per closed loop. Potts model: ρ_{8}, ρ_{9} and $n=\sqrt{Q}$.

Coulomb gas approach (1980s)

- Orient each loop independently.
- Set $n=\mathrm{e}^{i \gamma}+\mathrm{e}^{-i \gamma}=2 \cos \gamma$, giving weight $\mathrm{e}^{ \pm i \gamma}$ to each orientation.
- Make weights local: $\mathrm{e}^{i \gamma \frac{\alpha}{2 \pi}}$ when a loop turns an angle α to the left.
- Oriented loops are level lines of a (compactified) bosonic field ϕ.
- Critical exponents etc can be computed within this field theory.
- Rigorous (\approx equivalent) alternative: $\mathrm{SLE}_{\kappa}, \mathrm{CLE}_{\kappa}\left[\right.$ Schramm, 2.]

Coulomb gas and $N=3,4, \ldots$ correlation functions

- Observables are identified with certain CFT fields ϕ.
- Often $\phi_{r, s} \in$ Kac table, with $r, s \in \mathbb{N}$.

Coulomb gas and $N=3,4, \ldots$ correlation functions

- Observables are identified with certain CFT fields ϕ.
- Often $\phi_{r, s} \in \mathrm{Kac}$ table, with $r, s \in \mathbb{N}$.

In that case analytical progress is possible

- Indices r, s are interpreted as "charges" [Dotsenko-Fateev].
- Correlation functions $\neq 0$ only if charge-neutral (after "screening").
- Integral representation. Monodromy of conformal blocks.
- Moreover, singular state at level rs.
- Then $\left\langle\phi_{r, s} \cdots\right\rangle$ satisfies an ODE (solvable for small rs, e.g. 2)

What about geometrical observables (loops, clusters)?

Boundary case

- $\phi_{1,2}$ inserts a curve (loop = hull of cluster) at the boundary.
- 4-point fcts (4 bdry, or 2 bdry + 1 bulk) satisfy hypergeom. ODE.
- Two nice applications:
- Proba that percolation cluster connects two arcs of a circle [Cardy].
- Left-passage probability of SLE $_{\kappa}$ curve [Schramm].

What about geometrical observables (loops, clusters)?

Boundary case

- $\phi_{1,2}$ inserts a curve (loop = hull of cluster) at the boundary.
- 4-point fcts (4 bdry, or 2 bdry + 1 bulk) satisfy hypergeom. ODE.
- Two nice applications:
- Proba that percolation cluster connects two arcs of a circle [Cardy].
- Left-passage probability of SLE $_{\kappa}$ curve [Schramm].

Bulk case: More tricky

- $\phi_{0,1} \times \phi_{0,1}$ marks a bulk point of a loop [Saleur-Duplantier].
- $\phi_{1 / 2,0} \times \phi_{1 / 2,0}$ inserts a bulk cluster.
- Challenges: Outside Kac table, and indices $\notin \mathbb{N}$.
- No differential equations.
- Bulk fusion of such fields: "in progress" [Gainutdinov, JJ, Saleur].

"Geometrical" version of the Coulomb gas

Basically we have a free bosonic action $\frac{g}{4 \pi} \int \mathrm{~d}^{2} r(\partial \phi)^{2}$

- When $n \uparrow$, fluctuations in ϕ are smaller, so $g \uparrow$.
- For $n=2$, Kosterlitz-Thouless transition to non-critical phase.

"Geometrical" version of the Coulomb gas

Basically we have a free bosonic action $\frac{g}{4 \pi} \int \mathrm{~d}^{2} r(\partial \phi)^{2}$

- When $n \uparrow$, fluctuations in ϕ are smaller, so $g \uparrow$.
- For $n=2$, Kosterlitz-Thouless transition to non-critical phase.

Background electric charge

- The cylinder geometry is appropriate for transfer matrix setup.
- But winding loops then get a wrong weight $\tilde{n}=2$.
- Correct by coupling $\Delta \phi=\phi_{\text {top }}-\phi_{\text {bottom }}$ to background charge α_{0}.

"Geometrical" version of the Coulomb gas

Basically we have a free bosonic action $\frac{g}{4 \pi} \int \mathrm{~d}^{2} r(\partial \phi)^{2}$

- When $n \uparrow$, fluctuations in ϕ are smaller, so $g \uparrow$.
- For $n=2$, Kosterlitz-Thouless transition to non-critical phase.

Background electric charge

- The cylinder geometry is appropriate for transfer matrix setup.
- But winding loops then get a wrong weight $\tilde{n}=2$.
- Correct by coupling $\Delta \phi=\phi_{\text {top }}-\phi_{\text {bottom }}$ to background charge α_{0}.

Liouville potential [Kondev 1997]

- Local weight is a periodic functional of ϕ.
- Hence expand on vertex operators $\mathrm{e}^{i \alpha \phi}$.
- Keep only most relevant one, and require its RG marginality.
- This fixes g as a function of n.

Local operators in the CG

Electric (vertex) operators $V_{\alpha}=\mathrm{e}^{i \alpha \phi}$

- $\left\langle V_{\alpha}\left(r_{1}\right) V_{-\alpha}\left(r_{2}\right)\right\rangle$ modifies the weight of loops separating r_{1} from r_{2}.
- We need electric charge neutrality (up to shifts by α_{0}).

Local operators in the CG

Electric (vertex) operators $V_{\alpha}=\mathrm{e}^{\mathrm{i} \alpha \phi}$

- $\left\langle V_{\alpha}\left(r_{1}\right) V_{-\alpha}\left(r_{2}\right)\right\rangle$ modifies the weight of loops separating r_{1} from r_{2}.
- We need electric charge neutrality (up to shifts by α_{0}).

Magnetic (vortex) operators \mathcal{O}_{m}

- $\left\langle\mathcal{O}_{m}\left(r_{1}\right) \mathcal{O}_{-m}\left(r_{2}\right)\right\rangle$ makes m defect lines run from r_{1} to r_{2}.
- Permits us to compute the fractal dimension of a loop, etc.

Local operators in the CG

Electric (vertex) operators $V_{\alpha}=\mathrm{e}^{\mathrm{i} \alpha \phi}$

- $\left\langle V_{\alpha}\left(r_{1}\right) V_{-\alpha}\left(r_{2}\right)\right\rangle$ modifies the weight of loops separating r_{1} from r_{2}.
- We need electric charge neutrality (up to shifts by α_{0}).

Magnetic (vortex) operators \mathcal{O}_{m}

- $\left\langle\mathcal{O}_{m}\left(r_{1}\right) \mathcal{O}_{-m}\left(r_{2}\right)\right\rangle$ makes m defect lines run from r_{1} to r_{2}.
- Permits us to compute the fractal dimension of a loop, etc.

Fundamental conceptual problem in the CG construction

- Many correlators are geometrically well-defined, yet violate charge neutrality. E.g. give four different loop weights like this:

Quantum Liouville theory

- Originates from string theory / quantum gravity [Polyakov 1981].
- Original theory has $c \geq 25$, but recent work [schomerus, Zamolodchikov, Kostov-Petkoval "tweaks" this to cover $c \leq 1$.

$$
\mathcal{A}=\int \mathrm{d}^{2} r \frac{\sqrt{g}}{4 \pi}\left[\partial_{a} \phi \partial_{b} \phi g^{a b}+i \hat{Q} \mathcal{R} \phi+4 \pi \mu \mathrm{e}^{-2 i \hat{b} \phi}\right]
$$

Quantum Liouville theory

- Originates from string theory / quantum gravity [Polyakov 1981].
- Original theory has $c \geq 25$, but recent work [schomerus, Zamolodchikov, Kostov-Petkoval "tweaks" this to cover $c \leq 1$.

$$
\mathcal{A}=\int \mathrm{d}^{2} r \frac{\sqrt{g}}{4 \pi}\left[\partial_{a} \phi \partial_{b} \phi g^{a b}+i \hat{Q} \mathcal{R} \phi+4 \pi \mu \mathrm{e}^{-2 i \hat{b} \phi}\right]
$$

- $g^{a b}$ metric; \mathcal{R} Ricci scalar; \hat{b} real constant; and $\hat{Q}=\left(\hat{b}^{-1}-\hat{b}\right)$.
- The value of μ is irrelevant, as long as $\mu \neq 0$.
- Central charge $c=1-6 \hat{Q}^{2} \leq 1$.

Quantum Liouville theory

- Originates from string theory / quantum gravity [Polyakov 1981].
- Original theory has $c \geq 25$, but recent work [schomerus, Zamolodchikov, Kostov-Petkoval "tweaks" this to cover $c \leq 1$.

$$
\mathcal{A}=\int \mathrm{d}^{2} r \frac{\sqrt{g}}{4 \pi}\left[\partial_{a} \phi \partial_{b} \phi g^{a b}+i \hat{Q} \mathcal{R} \phi+4 \pi \mu \mathrm{e}^{-2 i \hat{b} \phi}\right]
$$

- $g^{a b}$ metric; \mathcal{R} Ricci scalar; \hat{b} real constant; and $\hat{Q}=\left(\hat{b}^{-1}-\hat{b}\right)$.
- The value of μ is irrelevant, as long as $\mu \neq 0$.
- Central charge $c=1-6 \hat{Q}^{2} \leq 1$.

Vertex operators $V_{\hat{\alpha}} \equiv e^{2 \hat{\alpha} \phi}$

- Scaling exponents (conformal weights): $\Delta=\bar{\Delta}=\hat{\alpha}(\hat{\alpha}-\hat{Q})$

Three-point functions and structure constants

DOZZ formula [Dorn-Otto, Zamolodchikov-Zamolodchikov]

$$
\begin{gathered}
\left\langle V_{\hat{\alpha}_{1}}\left(r_{1}\right) V_{\hat{\alpha}_{2}}\left(r_{2}\right) V_{\hat{\alpha}_{3}}\left(r_{3}\right)\right\rangle=\hat{C}\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\alpha}_{3}\right) \widetilde{\prod} r_{i j}^{-2 \Delta_{i j}^{k}} \\
\hat{C}\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\alpha}_{3}\right)=\frac{A_{\hat{b}} \Upsilon\left(\hat{b}-\hat{Q}+\hat{\alpha}_{123}\right) \widetilde{\prod \Upsilon\left(\hat{b}+\hat{\alpha}_{i j}^{k}\right)}}{\sqrt{\prod_{i=1}^{3} \Upsilon\left(\hat{b}+2 \hat{\alpha}_{i}\right) \Upsilon\left(\hat{b}-\hat{Q}+2 \hat{\alpha}_{i}\right)}}
\end{gathered}
$$

Here the $c \leq 1$ version [Schomerus, Kostov-Petkova].

Three-point functions and structure constants

DOZZ formula [Dorn-Otto, Zamolodchikov-Zamolodchikov]

$$
\begin{gathered}
\left\langle V_{\hat{\alpha}_{1}}\left(r_{1}\right) V_{\hat{\alpha}_{2}}\left(r_{2}\right) V_{\hat{\alpha}_{3}}\left(r_{3}\right)\right\rangle=\hat{C}\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\alpha}_{3}\right) \widetilde{\prod} r_{i j}^{-2 \Delta_{i j}^{\kappa}} \\
\hat{C}\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\alpha}_{3}\right)=\frac{A_{\hat{b}} \Upsilon\left(\hat{b}-\hat{Q}+\hat{\alpha}_{123}\right) \widetilde{\Pi} \Upsilon\left(\hat{b}+\hat{\alpha}_{i j}^{k}\right)}{\sqrt{\prod_{i=1}^{3} \Upsilon\left(\hat{b}+2 \hat{\alpha}_{i}\right) \Upsilon\left(\hat{b}-\hat{Q}+2 \hat{\alpha}_{i}\right)}}
\end{gathered}
$$

Here the $c \leq 1$ version [Schomerus, Kostov-Petkova].

- $\tilde{\Pi}$ makes ($i j k$) run over the three cyclic permutations of (123).
- $\hat{\alpha}_{i j}^{k} \equiv \hat{\alpha}_{i}+\hat{\alpha}_{j}-\hat{\alpha}_{k}$ and $\hat{\alpha}_{123} \equiv \hat{\alpha}_{1}+\hat{\alpha}_{2}+\hat{\alpha}_{3}$.
- $A_{\hat{b}}$ defined by the normalisation $C(\hat{\alpha}, \hat{\alpha}, 0)=1$.

Three-point functions and structure constants

DOZZ formula [Dorn-Otto, Zamolodchikov-Zamolodchikov]

$$
\begin{gathered}
\left\langle V_{\hat{\alpha}_{1}}\left(r_{1}\right) V_{\hat{\alpha}_{2}}\left(r_{2}\right) V_{\hat{\alpha}_{3}}\left(r_{3}\right)\right\rangle=\hat{C}\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\alpha}_{3}\right) \widetilde{\prod} r_{i j}^{-2 \Delta_{i j}^{k}} \\
\hat{C}\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\alpha}_{3}\right)=\frac{A_{\hat{b}} \Upsilon\left(\hat{b}-\hat{Q}+\hat{\alpha}_{123}\right) \widetilde{\Pi} \Upsilon\left(\hat{b}+\hat{\alpha}_{i j}^{K}\right)}{\sqrt{\prod_{i=1}^{3} \Upsilon\left(\hat{b}+2 \hat{\alpha}_{i}\right) \Upsilon\left(\hat{b}-\hat{Q}+2 \hat{\alpha}_{i}\right)}}
\end{gathered}
$$

Here the $c \leq 1$ version [Schomerus, Kostov-Petkova].

- $\widetilde{ }$ makes ($i j k$) run over the three cyclic permutations of (123).
- $\hat{\alpha}_{i j}^{k} \equiv \hat{\alpha}_{i}+\hat{\alpha}_{j}-\hat{\alpha}_{k}$ and $\hat{\alpha}_{123} \equiv \hat{\alpha}_{1}+\hat{\alpha}_{2}+\hat{\alpha}_{3}$.
- $A_{\hat{b}}$ defined by the normalisation $C(\hat{\alpha}, \hat{\alpha}, 0)=1$.

$$
\ln \Upsilon(x) \equiv \int_{0}^{\infty} \frac{\mathrm{d} t}{t}\left[\left(\frac{\hat{q}}{2}-x\right)^{2} \mathrm{e}^{-t}-\frac{\sinh ^{2}\left(\frac{\hat{q}}{2}-x\right) \frac{t}{2}}{\sinh \frac{\hat{b} t}{2} \sinh \frac{t}{2 \hat{b}}}\right]
$$

- Defined outside the range $0<\operatorname{Re}(x)<\hat{q}$ by functional relations.

Main results of this talk

- Geometric realisation of DOZZ for loops with modified weights.
- $\hat{C}\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\alpha}_{3}\right) \neq 0$ even when charge neutrality is broken.
- Our interpretation supports / exploits this lack of charge neutrality.

Definition of our three-point function

Definition of our three-point function

$\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\alpha}_{3}\right)$ linked to loop weights $\left(n_{1}, n_{2}, n_{3}\right)$ by matching scaling dimensions of two-point functions: $n_{i}=2 \cos \pi e_{i}$ with $\hat{\alpha}_{i}=\frac{\hat{Q}}{2}+\frac{e_{i}}{2 \hat{b}}$.

Definition of our three-point function

$\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\alpha}_{3}\right)$ linked to loop weights $\left(n_{1}, n_{2}, n_{3}\right)$ by matching scaling dimensions of two-point functions: $n_{i}=2 \cos \pi e_{i}$ with $\hat{\alpha}_{i}=\frac{\hat{Q}}{2}+\frac{e_{i}}{2 \hat{b}}$.

Convenient reformulation on the cylinder

- Take $r_{1} \rightarrow-\mathrm{i} \infty$ and $r_{3} \rightarrow+\mathrm{i} \infty$: No loop can surround r_{1} or r_{3}.
- Loop weight then depends on [\#traversals mod 2] of C_{12} and C_{23}.

Extracting $\hat{C}\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\alpha}_{3}\right)$ from the lattice model

- $Z_{n_{i}, n_{j}, n_{k}}\left(r_{1}, r_{2}, r_{3}\right) \equiv Z_{i j k}$ defined by giving modified loop weights
- Set $n=n_{0}$ for bulk loops.

$$
\hat{C}\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\alpha}_{3}\right)=Z_{123} \sqrt{Z_{000} \frac{Z_{011}}{Z_{101} Z_{110}} \frac{Z_{202}}{Z_{220} Z_{022}} \frac{Z_{330}}{Z_{033} Z_{303}}}
$$

- This is independent of non-universal factors in operator definitions.

Numerical check

- $Z_{n_{i}, n_{j}, n_{k}}\left(r_{1}, r_{2}, r_{3}\right)$ obtained from transfer matrix on the cylinder.
- Then form the universal ratio $\hat{C}\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\alpha}_{3}\right)$

Numerical check

- $Z_{n_{i}, n_{j}, n_{k}}\left(r_{1}, r_{2}, r_{3}\right)$ obtained from transfer matrix on the cylinder.
- Then form the universal ratio $\hat{C}\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\alpha}_{3}\right)$

$\hat{C}(\hat{\alpha}, \hat{\alpha}, \hat{\alpha})$ as a function of $n_{1}=n_{2}=n_{3}$, in the case $n=1$.

V_{0} is not the identity operator!

- Taking $\hat{\alpha} \rightarrow 0$ in $V_{\hat{\alpha}} \equiv e^{2 \hat{\alpha} \phi}$ gives of course $\Delta=\bar{\Delta}=0$.
- Meanwhile $\hat{\alpha}_{3}=0$ implies $\left(n_{1}, n_{2}, n_{3}\right)=\left(n_{1}, n_{2}, n\right)$:

V_{0} is not the identity operator!

- Taking $\hat{\alpha} \rightarrow 0$ in $V_{\hat{\alpha}} \equiv e^{2 \hat{\alpha} \phi}$ gives of course $\Delta=\bar{\Delta}=0$.
- Meanwhile $\hat{\alpha}_{3}=0$ implies $\left(n_{1}, n_{2}, n_{3}\right)=\left(n_{1}, n_{2}, n\right)$:

- Weight of loop around r_{1} depends on whether it also surrounds r_{3}.
- V_{0} is an indicator / marking operator (some analogy to SLE $_{\kappa}$).

Two-point functions are orthogonal. . . up to subtleties

- CFT result [Polyakov 1970]: $\left\langle\Phi\left(r_{1}\right) \Phi\left(r_{2}\right)\right\rangle=\frac{\delta\left(\Delta_{\Phi_{1}}, \Delta_{\Phi_{2}}\right)}{\left|r_{1}-r_{2}\right|^{\Delta_{1}+\Delta_{\Phi_{2}}}}$
- Indeed $\hat{C}(\hat{\alpha}, \hat{\alpha}, 0)=1$, but $\hat{C}(\hat{\alpha}, \hat{\beta}, 0) \neq 0$ even when $\hat{\alpha} \neq \hat{\beta}$.

Two-point functions are orthogonal. . . up to subtleties

- CFT result [Polyakov 1970]: $\left\langle\Phi\left(r_{1}\right) \Phi\left(r_{2}\right)\right\rangle=\frac{\delta\left(\Delta \phi_{1}, \Delta_{\phi_{2}}\right)}{\left|r_{1}-r_{2}\right|^{\Delta_{1}+\Delta \Delta_{\phi_{2}}}}$
- Indeed $\hat{C}(\hat{\alpha}, \hat{\alpha}, 0)=1$, but $\hat{C}(\hat{\alpha}, \hat{\beta}, 0) \neq 0$ even when $\hat{\alpha} \neq \hat{\beta}$.

Orthogonality catastrophe [Anderson 1967]

- Consider the overlap $\left\langle\Omega_{2} \mid \Omega_{1}\right\rangle$ of two XXX ground states with different twists (take $n=2$).
- $\left\langle\Omega_{2} \mid \Omega_{1}\right\rangle \propto Z_{n_{1}, n_{2}, n_{3}}\left(r_{1}, r_{2}, r_{3}\right)$ with $\hat{\alpha}_{3}=\hat{\alpha}_{1}+\hat{\alpha}_{2}$.
- This vanishes as $L^{-\operatorname{const} \times\left(\alpha_{1}-\alpha_{2}\right)^{2}}$ with the size L of the chain.

Two-point functions are orthogonal. . . up to subtleties

- CFT result [Polyakov 1970]: $\left\langle\Phi\left(r_{1}\right) \Phi\left(r_{2}\right)\right\rangle=\frac{\delta\left(\Delta_{\phi_{1}}, \Delta_{\Phi_{2}}\right)}{\left|r_{1}-r_{2}\right|^{\Delta_{\Phi_{1}}+\Delta_{\Phi_{2}}}}$
- Indeed $\hat{C}(\hat{\alpha}, \hat{\alpha}, 0)=1$, but $\hat{C}(\hat{\alpha}, \hat{\beta}, 0) \neq 0$ even when $\hat{\alpha} \neq \hat{\beta}$.

Orthogonality catastrophe [Anderson 1967]

- Consider the overlap $\left\langle\Omega_{2} \mid \Omega_{1}\right\rangle$ of two XXX ground states with different twists (take $n=2$).
- $\left\langle\Omega_{2} \mid \Omega_{1}\right\rangle \propto Z_{n_{1}, n_{2}, n_{3}}\left(r_{1}, r_{2}, r_{3}\right)$ with $\hat{\alpha}_{3}=\hat{\alpha}_{1}+\hat{\alpha}_{2}$.
- This vanishes as $L^{-\operatorname{const} \times\left(\alpha_{1}-\alpha_{2}\right)^{2}}$ with the size L of the chain.

However this drops out of the universal ratio

The result is $\hat{C}\left(\hat{\alpha}_{1}, \hat{\alpha}_{2}, \hat{\alpha}_{1}+\hat{\alpha}_{2}\right)=1$.

Application to Fortuin-Kasteleyn clusters

- Previously discussed by [Delfino-Viti].
- Numerical cheks in [Picco-Santachiara-Viti-Delfino].
- Take $n_{1}=n_{2}=n_{3}=0$ and $n=\sqrt{Q}$ for Q-state Potts model.
- Then $\hat{C} \propto \mathbb{P}\left(r_{1}, r_{2}, r_{3} \in\right.$ same $F K$ cluster $)$.

Application to Fortuin-Kasteleyn clusters

- Previously discussed by [Delfino-Viti].
- Numerical cheks in [Picco-Santachiara-Viti-Delfino].
- Take $n_{1}=n_{2}=n_{3}=0$ and $n=\sqrt{Q}$ for Q-state Potts model.
- Then $\hat{C} \propto \mathbb{P}\left(r_{1}, r_{2}, r_{3} \in\right.$ same $F K$ cluster $)$.

What about $\mathbb{P}\left(r_{1}, r_{2}, r_{3} \in\right.$ same loop $)$?

- We need to change the cluster-inserting operator $\phi_{1 / 2,0} \times \phi_{1 / 2,0}$ into the loop-marking operator $\phi_{0,1} \times \phi_{0,1}$.
- But matching scaling dimensions, the DOZZ formula diverges.
- However the numerical measurement is perfectly finite!
- Seemingly DOZZ covers only electric-type operators.

