Affine *q*-deformed symmetry and the classical Yang-Baxter σ -model

François Delduc¹, <u>Takashi Kameyama¹</u>, Marc Magro¹, Benoit Vicedo²

1) Laboratoire de Physique, ENS de Lyon, UMR CNRS 5672

2) School of Physics, Astronomy and Mathematics, University of Hertfordshire

Summary

Based on: [1701.03691]

We show that the local and non-local conserved charges of the YB σ M satisfy the defining relations of the infinite-dimensional Poisson algebra $\mathscr{U}_q(L\mathfrak{g})$, which is the classical analogue of the quantum loop algebra $U_q(L\mathfrak{g})$, where $L\mathfrak{g}$ is the loop algebra of \mathfrak{g} (rank(G)>1)

Defining relation of $\mathscr{U}_q(L\mathfrak{g})$ _

Defining relation of $\mathscr{U}_q(\mathfrak{g})$ _____ [Delduc-Magro-Vicedo, 13] $i\{Q_{\alpha_i}^H, Q_{\alpha_j}^H\} = 0,$ $C \cap H \cap F$ $C \cap F$

 $i\{Q_{\alpha_i}^H, \widetilde{Q}_{\pm\theta}^E\} = \pm d_i^{-1}(\theta, \alpha_i) \widetilde{Q}_{\pm\theta}^E,$ $q^{d_\theta Q_\theta^H} - q^{-d_\theta Q_\theta^H}$

q-Poisson Serre relations — $\{\underbrace{Q_{\alpha_i}^E, \{Q_{\alpha_i}^E, \cdots, \{Q_{\alpha_i}^E, \widetilde{Q}_{-\theta}^E\}_q \cdots\}_q\}_q = 0,$

$$i\{Q_{\alpha_{i}}^{E}, Q_{\pm\alpha_{j}}^{E}\} = \pm A_{ij} Q_{\pm\alpha_{j}}^{E},$$

$$i\{Q_{\theta}^{E}, Q_{-\theta}^{E}\} = \frac{q - q - q}{q^{d_{\theta}} - q^{-d_{\theta}}},$$

$$i\{Q_{\theta}^{E}, Q_{-\theta}^{E}\} = \frac{q - q - q}{q^{d_{\theta}} - q^{-d_{\theta}}},$$

$$i\{Q_{\alpha_{i}}^{E}, Q_{-\theta}^{E}\} = \delta_{ij} \frac{q^{d_{i}Q_{\alpha_{i}}^{H}} - q^{-d_{i}Q_{\alpha_{i}}^{H}}}{q^{d_{i}} - q^{-d_{i}}},$$

$$i\{Q_{\pm\alpha_{i}}^{E}, \widetilde{Q}_{\pm\theta}^{E}\} = 0,$$

$$i\{Q_{\pm\alpha_{i}}^{E}, \widetilde{Q}_{-\theta}^{E}\} = 0,$$

$$i\{Q_{\pm\alpha_{i}}^{E}, \widetilde{Q}_{-\theta}^{E}\} = 0,$$

$$i\{Q_{\pm\alpha_{i}}^{E}, \widetilde{Q}_{-\theta}^{E}\} = 0,$$

$$i\{Q_{\pm\alpha_{i}}^{E}, \widetilde{Q}_{\pm\theta}^{E}\} = 0,$$

$$i\{Q_{\pm\alpha_{i}}^{E}, \widetilde{Q}_{-\theta}^{E}\} = 0,$$

$$i\{Q_{\pm\alpha_{i}}^{E}, \widetilde{Q}_{\pm\theta}^{E}\} = 0,$$

$$i\{Q_{\pm\alpha_{i}$$

These defining relations are proved without encountering any ambiguity related to the non-ultralocality of the integrable σ -model

Yang-Baxter σ -model

Input: *R*-matrix satisfying mCYBE

$$S = -\frac{1}{2}(1+\eta^2)^2 \int dt \, dx \, \kappa \left(\partial_+ g g^{-1}, \frac{1}{1-\eta R} \partial_- g g^{-1}\right)$$

Deformation parameter: $\eta \in [0,1)$

[Klimčík, 02,08] [Delduc-Magro-Vicedo, 1]

- The YB σ M is an integrable deformation of the PCM on a Lie group G
- The deformation breaks the $G \times G$ symmetry to $U(1)^{\operatorname{rank}(G)} \times G$
- *R* is a skew-symmetric solution of mCYBE

 $\kappa(M, RN) = -\kappa(RM, N), \quad [RM, RN] = R([RM, N] + [M, RN]) + [M, N]$ Here we choose the standard *R*-matrix of Drinfeld-Jimbo type

•
$$q \in \mathbb{R}$$
 is related to η as $q = \mathrm{e}^{\gamma}$ with $\gamma = -\eta/(1+\eta^2)^2$

Expansion around the poles of the twist function

- The Poisson bracket of the Lax matrix depends on the twist function $\varphi(\lambda)$
- The double pole of $\varphi_{PCM}(\lambda)$ at $\lambda_0=0$ splits into a pair of single poles of $\varphi_{YB\sigma M}(\lambda)$ at $\lambda_+=\pm i\eta$
- At the two poles at $\lambda_+=\pm i\eta$, $\mathcal{L}^g(\pm i\eta,x)$ belong to opposite Borel subalgebras of $\mathfrak{g}^{\mathbb{C}}$
- Monodromy matrices $T^g(\pm i\eta)$ give conserved charges $Q^H_{\alpha_i}$, $Q^E_{\pm \alpha_i}$ which satisfy the defining relations of $\mathscr{U}_q(\mathfrak{g})$ [Delduc-Magro-Vicedo, 13]

- The middle line depicts the level 0 charges of the finite-dimensional $\mathcal{U}_{a}(\mathfrak{g})$, with the red and green portions corresponding to charges coming respectively from $T^{g}(\pm i\eta)$.
- The dots on the ends of the upper and lower lines correspond to two new level ±1 charges of the infinite-dimensional $\mathcal{U}_{q}(L\mathfrak{g})$, coming respectively from the next order in the expansion of $T^{g}(\lambda)$ around $\pm i\eta$.

• $\tilde{Q}_{\pm A}^{E}$ associated with the affine simple root are extracted from the linear terms in the expansion of $T^{g}(\lambda)$ around $\pm i\eta$, respectively

Defining relations of Uq(Lg)

Charges associated with the string of roots $-\theta + r \alpha_i$ satisfy the q-Poisson brackets, $\{Q^E_{\alpha_i}, \tilde{Q}^E_{-\theta+r\alpha_i}\}_q = 2iN_{-\theta+r\alpha_i,\alpha_i}\tilde{Q}^E_{-\theta+(r+1)\alpha_i}$

Since $-\theta + (\mathbf{q}+1) \alpha_i$ is not a root by definition of \mathbf{q} , we have that $N_{-\theta+\mathbf{q}\alpha_i,\alpha_i} = 0$, hence the q-Poisson-Serre relation is satisfied

- Despite the non-ultralocal nature of the model considered, there are no ambiguities in the Poisson brackets entering the defining relations of the infinite-dimensional Poisson algebra $\mathscr{U}_q(L\mathfrak{g})$
- Unlike the Yangian [MacKay, 92] and SU(2) YB σ M [Kawaguchi-Matsumoto-Yoshida, 12], the problematic terms $\partial_x \delta_{xy}$ never showed up in the derivation of the defining relations
- Although the defining relations of $\mathscr{U}_q(L\mathfrak{g})$ are unambiguous, the Poisson brackets of certain conserved charges are still ill-defined e.g. $\{\mathfrak{Q}^E_{\theta}(x), \widetilde{\mathfrak{Q}}^E_{-\theta}(y)\}$ does not appear in the defining relations, but contains $\partial_x \delta_{xy}$ terms