Spectral equations for the modular oscillator

Rinat Kashaev
University of Geneva

Joint work with Sergey Sergeev (Canberra, Australia)

Correlation functions of quantum integrable systems and beyond, 23-26 October 2017, ENS, Lyon (France)

Motivation: topological strings in toric Calabi-Yau manifolds

To a given (complex three-dimensional) toric CY manifold M, through the mirror symmetry, one can associate a trace class quantum mechanical operator. There is a strong evidence that the spectral properties of that operator are deeply related to enumerative invariants of M encoded into partition functions of topological strings propagating in M. This relation originates from the work of Aganagic-Dijkgraaf-Klemm-Mariño-Vafa (2006) and is expressed most strongly in the form of the conjecture of Grassi-Hatsuda-Mariño (2016). Example: for the toric CY manifold known as local $\mathbb{P}^{1} \times \mathbb{P}^{1}$ or local \mathbb{F}_{0}, the corresponding operator is of the form

$$
\boldsymbol{\rho}_{\mathbb{F}_{0}, m}^{-1}=\boldsymbol{v}+\boldsymbol{v}^{-1}+\boldsymbol{u}+m \boldsymbol{u}^{-1}, \quad m \in \mathbb{R}_{>0}
$$

with positive self-adjoint operators \boldsymbol{u} and \boldsymbol{v} satisfying the Heisenberg-Weyl commutation relation $\boldsymbol{u} \boldsymbol{v}=e^{\mathrm{i} \hbar} \boldsymbol{v} \boldsymbol{u}, \hbar \in \mathbb{R}_{>0}$.

Statement of the problem

With normalised Heisenberg operators in the Hilbert space $L^{2}(\mathbb{R})$ $\boldsymbol{x} \psi(x)=x \psi(x)$ and $\boldsymbol{p} \psi(x)=\frac{1}{2 \pi \mathrm{i}} \frac{\partial \psi(x)}{\partial x}$, for $\mathrm{b} \in \mathbb{C}_{\neq 0}$, define

$$
\boldsymbol{u}:=\mathrm{e}^{2 \pi \mathrm{~b} \boldsymbol{x}}, \quad \boldsymbol{v}:=\mathrm{e}^{2 \pi \mathrm{~b} \boldsymbol{p}}, \quad \overline{\boldsymbol{u}}:=\mathrm{e}^{2 \pi \mathrm{~b}^{-1} \boldsymbol{x}}, \quad \overline{\boldsymbol{v}}:=\mathrm{e}^{2 \pi \mathrm{~b}^{-1} \boldsymbol{p}} .
$$

The common spectral problem for two Hamiltonians
$\boldsymbol{H}:=\boldsymbol{v}+\boldsymbol{v}^{-1}+\boldsymbol{u}+\boldsymbol{u}^{-1}$ and $\overline{\boldsymbol{H}}:=\overline{\boldsymbol{v}}+\overline{\mathbf{v}}^{-1}+\overline{\boldsymbol{u}}+\overline{\boldsymbol{u}}^{-1}$ makes
sense due to formal commutativity of \boldsymbol{H} and $\overline{\boldsymbol{H}}$, a manifestation of Faddeev's modular duality.
In the limit $\mathrm{b} \rightarrow 0$ one has $\boldsymbol{H}=4+(2 \pi \mathrm{~b})^{2}\left(\boldsymbol{p}^{2}+\boldsymbol{x}^{2}\right)+\mathcal{O}\left(\mathrm{b}^{4}\right)$.
Pair of functional difference equations:
$\psi(x+$ is $)+\psi(x-i s)=\left(\varepsilon_{s}-2 \cosh (2 \pi s x)\right) \psi(x), s \in\left\{\mathbf{b}^{ \pm 1}\right\}$.
Strongly coupled regime $|q|<1, q:=e^{\pi \mathrm{i} \mathrm{b}^{2}}$. The Hamiltonians are Hermitian conjugates of each other if $\mathrm{b}=\mathrm{e}^{\mathrm{i} \theta}, 0<\theta<\pi / 2$.
In the general case of Baxter's $T-Q$ equations, the solution in the strongly coupled regime is outlined by Sergeev (2005).

The main functional equation

$$
f\left(u / q^{2}\right)+q^{2} u^{2} f\left(q^{2} u\right)=\left(1-\varepsilon u+u^{2}\right) f(u) .
$$

Involution in the space of solutions: $f(u) \mapsto \check{f}(u):=u^{-1} f\left(u^{-1}\right)$.
An equivalent first order difference matrix equation
$\binom{f\left(u / q^{2}\right)}{f(u)}=L(u)\binom{f(u)}{f\left(q^{2} u\right)}, L(u):=\left(\begin{array}{cc}1-\varepsilon u+u^{2} & -q^{2} u^{2} \\ 1 & 0\end{array}\right)$

$$
\binom{f\left(u / q^{2}\right)}{f(u)}=M_{n}(u)\binom{f\left(q^{2 n-2} u\right)}{f\left(q^{2 n} u\right)}, \quad \forall n \in \mathbb{Z}_{>0}
$$

$M_{n}(u):=L(u) L\left(q^{2} u\right) \cdots L\left(q^{2(n-1)} u\right), \quad M_{\infty}(u)=\left(\begin{array}{cc}\chi_{q}\left(u / q^{2}\right) & 0 \\ \chi_{q}(u) & 0\end{array}\right)$,
where $\chi_{q}(u)=\chi_{q}(u, \varepsilon)$ is an entire function of $u \in \mathbb{C}$ normalised so that $\chi_{q}(0)=1$ and which solves the main functional equation. The second solution $\check{\chi}_{q}(u):=u^{-1} \chi_{q}\left(u^{-1}\right)$ leads to a non-zero Wronskian $\left[\chi_{q}, \check{\chi}_{q}\right](u):=\chi_{q}\left(q^{-2} u\right) \check{\chi}_{q}(u)-\check{\chi}_{q}\left(q^{-2} u\right) \chi_{q}(u)$.

Orthogonal polynomials associated to $\chi_{q}(u, \varepsilon)$

$$
\chi_{q}(u, \varepsilon)=\sum_{n \geq 0} \frac{\chi_{q, n}(\varepsilon)}{\left(q^{-2} ; q^{-2}\right)_{n}} u^{n}=\sum_{n \geq 0}(-1)^{n} q^{n(n+1)} \frac{\chi_{q, n}(\varepsilon)}{\left(q^{2} ; q^{2}\right)_{n}} u^{n} .
$$

with polynomials $\chi_{q, n}(\varepsilon) \in \mathbb{C}[\varepsilon]$ satisfying the recurrence relation

$$
\chi_{q, 0}(\varepsilon)=1, \quad \chi_{q, n+1}(\varepsilon)=\varepsilon \chi_{q, n}(\varepsilon)+\left(q^{n}-q^{-n}\right)^{2} \chi_{q, n-1}(\varepsilon),
$$

with few first polynomials

$$
\begin{aligned}
\chi_{q, 1}(\varepsilon)=\varepsilon, \quad \chi_{q, 2}(\varepsilon) & =\varepsilon^{2}+\left(q-q^{-1}\right)^{2}, \\
& \chi_{q, 3}(\varepsilon)=\varepsilon\left(\varepsilon^{2}+\left(q^{2}-q^{-2}\right)^{2}+\left(q-q^{-1}\right)^{2}\right),
\end{aligned}
$$

Multiplication rule

$$
\begin{aligned}
& \chi_{q, m}(\varepsilon) \chi_{q, n}(\varepsilon) \\
= & \sum_{k=0}^{\min (m, n)}
\end{aligned} \frac{\left(q^{2 m} ; q^{-2}\right)_{k}\left(q^{2 n} ; q^{-2}\right)_{k}\left(q^{2(k-m-n)} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} \chi_{q, m+n-2 k}(\varepsilon)
$$

$$
f\left(q^{2} u\right)+\frac{u^{2}}{q^{2}} f\left(\frac{u}{q^{2}}\right)=\left(1-\varepsilon u+u^{2}\right) f(u)
$$

There is no solution regular at $u=0$. The series

$$
\chi_{q^{-1}}(u, \varepsilon) \simeq \sum_{n \geq 0} \frac{\chi_{q, n}(\varepsilon)}{\left(q^{2} ; q^{2}\right)_{n}} u^{n}
$$

does not converge, it is only an asymptotic expansion of the true solution

$$
\chi_{q^{-1}}(u, \varepsilon):=\frac{\check{\chi}_{q}(u, \varepsilon)}{\left[\chi_{q}, \check{\chi}_{q}\right](u)}
$$

Behavior at infinity

In the limit $x \rightarrow-\infty$, equation

$$
\psi(x+\mathrm{ib})+\psi(x-\mathrm{ib})=(\varepsilon-2 \cosh (2 \pi \mathrm{~b} x)) \psi(x)
$$

is approximated by the equation

$$
\psi(x+i b)+\psi(x-i b)=-\mathrm{e}^{-2 \pi b x} \psi(x)
$$

where, in the left hand side, any one of the two terms can be dominating giving rise to two possible asymtotics

$$
\left.\psi(x)\right|_{x \rightarrow-\infty} \sim \mathrm{e}^{\epsilon i \pi x^{2}+2 \pi \eta x}, \quad \epsilon \in\{ \pm 1\}, \quad \eta:=\left(\mathrm{b}+\mathrm{b}^{-1}\right) / 2 .
$$

Thus, there are two solutions of the form

$$
\psi_{\epsilon}(x)=\mathrm{e}^{\epsilon i \pi x^{2}+2 \pi \eta x} \phi_{\epsilon}(x),\left.\quad \phi_{\epsilon}(x)\right|_{x \rightarrow-\infty}=\mathcal{O}(1), \quad \epsilon \in\{ \pm 1\}
$$

with the identification $\phi_{\epsilon}(x)=\chi_{q^{-\epsilon}}(u) \overline{\chi_{q^{\epsilon}}(u)}$.
The general, exponentially decaying at $x \rightarrow-\infty$, solution is of the form

$$
\psi(x)=\mathrm{e}^{2 \pi \eta x} \sum_{\epsilon \in\{ \pm 1\}} A_{\epsilon} \mathrm{e}^{\epsilon \mathrm{i} \pi x^{2}} \phi_{\epsilon}(x)
$$

Ansatz for the eigenfunction

$$
\psi(x):=\mathrm{b}^{-1} \mathrm{e}^{\pi \mathrm{i} \sigma^{2}-\xi \pi \mathrm{i} / 4} \mathrm{e}^{2 \pi \eta x+\mathrm{i} \pi x^{2}} \frac{\check{\chi}_{q}(u) \overline{\chi_{q}(u)}+\xi \chi_{q}(u) \overline{\tilde{\chi}_{q}(u)}}{\theta_{1}(s u, q) \theta_{1}\left(s^{-1} u, q\right)}
$$

where

$$
\begin{aligned}
& {\left[\chi_{q}, \check{\chi}_{q}\right](u)=\varrho \theta_{1}(s u, q) \theta_{1}\left(s^{-1} u, q\right)} \\
& \qquad \theta_{1}(u, q):=\frac{1}{\mathrm{i}} \sum_{n \in \mathbb{Z}}(-1)^{n} q^{(n+1 / 2)^{2}} u^{n+1 / 2},
\end{aligned}
$$

with certain functions $s=s(\varepsilon, q), \varrho=\varrho(\varepsilon, q), s:=\mathrm{e}^{2 \pi \mathrm{~b} \sigma}$, and the variable $\xi \in\{ \pm 1\}$ is the parity of the eigenstate: $\psi(-x)=\xi \psi(x)$. The function is real $\overline{\psi(x)}=\psi(x)$ (thus modular invariant $\mathrm{b} \leftrightarrow \mathrm{b}^{-1}$) and exponentially decays at both infinities

$$
|\psi(x)| \sim \mathrm{e}^{-2 \pi \eta|x|}, \quad x \rightarrow \pm \infty
$$

The quantization condition

The quantization condition is the analyticity condition for $\psi(x)$ with complex x in the strip

$$
S_{\mathrm{b}}:=\left\{z \in \mathbb{C}| | \Im z \mid<\max \left(|\Re \mathrm{b}|,\left|\Re \mathrm{b}^{-1}\right|\right)\right\} .
$$

Define

$$
G_{q}(u, \varepsilon):=\frac{\chi_{q}(u, \varepsilon)}{\check{\chi}_{q}(u, \varepsilon)}, \quad G_{q}(u, \varepsilon) G_{q}(1 / u, \varepsilon)=1, \quad \forall u \in \mathbb{C}_{\neq 0}
$$

Theorem

Let $\varepsilon=\varepsilon(\sigma)$ be such that $\left[\chi_{q}, \check{\chi}_{q}\right](u)=\varrho \theta_{1}(s u) \theta_{1}\left(s^{-1} u\right)$ for any $u \in \mathbb{C}$, and assume that $s \notin \pm q^{\mathbb{Z}}$ (recall that $s=s(\sigma)=\mathrm{e}^{2 \pi \mathrm{~b} \sigma}$). Then the eigenfunction $\psi(x)$ does not have poles in the strip S_{b} if the variable σ is such that $G_{q}(s, \varepsilon)=-\xi \overline{G_{q}(s, \varepsilon)}$. Moreover, in that case, $\psi(x)$ is an entire function on \mathbb{C}.

