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Motivation: topological strings in toric Calabi–Yau
manifolds

To a given (complex three-dimensional) toric CY manifold M,
through the mirror symmetry, one can associate a trace class
quantum mechanical operator. There is a strong evidence that the
spectral properties of that operator are deeply related to
enumerative invariants of M encoded into partition functions of
topological strings propagating in M. This relation originates from
the work of Aganagic–Dijkgraaf–Klemm–Mariño–Vafa (2006) and
is expressed most strongly in the form of the conjecture of
Grassi–Hatsuda–Mariño (2016).
Example: for the toric CY manifold known as local P1× P1 or local
F0, the corresponding operator is of the form

ρ−1F0,m
= v + v−1 + u + mu−1, m ∈ R>0,

with positive self-adjoint operators u and v satisfying the
Heisenberg–Weyl commutation relation uv = e i~vu, ~ ∈ R>0.
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Statement of the problem

With normalised Heisenberg operators in the Hilbert space L2(R)

xψ(x) = xψ(x) and pψ(x) = 1
2πi

∂ψ(x)
∂x , for b ∈ C 6=0, define

u := e2πbx , v := e2πbp, ū := e2πb
−1x , v̄ := e2πb

−1p .

The common spectral problem for two Hamiltonians
H := v + v−1 + u + u−1 and H̄ := v̄ + v̄−1 + ū + ū−1 makes
sense due to formal commutativity of H and H̄ , a manifestation of
Faddeev’s modular duality.
In the limit b→ 0 one has H = 4 + (2πb)2(p2 + x2) +O(b4).
Pair of functional difference equations:
ψ(x + is) + ψ(x − is) = (εs − 2 cosh(2πsx))ψ(x), s ∈ {b±1}.
Strongly coupled regime |q| < 1, q := eπib

2
. The Hamiltonians are

Hermitian conjugates of each other if b = eiθ, 0 < θ < π/2.
In the general case of Baxter’s T − Q equations, the solution in
the strongly coupled regime is outlined by Sergeev (2005).
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The main functional equation

f
(
u/q2

)
+ q2u2f (q2u) = (1− εu + u2)f (u).

Involution in the space of solutions: f (u) 7→ f̌ (u) := u−1f
(
u−1

)
.

An equivalent first order difference matrix equation(
f
(
u/q2

)
f (u)

)
= L(u)

(
f (u)
f (q2u)

)
, L(u) :=

(
1− εu + u2 −q2u2

1 0

)
(

f
(
u/q2

)
f (u)

)
= Mn(u)

(
f
(
q2n−2u

)
f (q2nu)

)
, ∀n ∈ Z>0,

Mn(u) := L(u)L(q2u) · · · L(q2(n−1)u), M∞(u) =

(
χq

(
u/q2

)
0

χq(u) 0

)
,

where χq(u) = χq(u, ε) is an entire function of u ∈ C normalised
so that χq(0) = 1 and which solves the main functional equation.
The second solution χ̌q(u) := u−1χq(u−1) leads to a non-zero
Wronskian [χq, χ̌q](u) := χq

(
q−2u

)
χ̌q(u)− χ̌q

(
q−2u

)
χq(u).
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Orthogonal polynomials associated to χq(u, ε)

χq(u, ε) =
∑
n≥0

χq,n(ε)

(q−2; q−2)n
un =

∑
n≥0

(−1)nqn(n+1) χq,n(ε)

(q2; q2)n
un .

with polynomials χq,n(ε) ∈ C[ε] satisfying the recurrence relation

χq,0(ε) = 1 , χq,n+1(ε) = εχq,n(ε) + (qn − q−n)2χq,n−1(ε),

with few first polynomials

χq,1(ε) = ε, χq,2(ε) = ε2 + (q − q−1)2,

χq,3(ε) = ε(ε2 + (q2 − q−2)2 + (q − q−1)2), . . .

Multiplication rule

χq,m(ε)χq,n(ε)

=

min(m,n)∑
k=0

(q2m; q−2)k(q2n; q−2)k(q2(k−m−n); q2)k
(q2; q2)k

χq,m+n−2k(ε)
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The main functional equation with q replaced by q−1

f (q2u) +
u2

q2
f

(
u

q2

)
= (1− εu + u2)f (u).

There is no solution regular at u = 0. The series

χq−1(u, ε) '
∑
n≥0

χq,n(ε)

(q2; q2)n
un

does not converge, it is only an asymptotic expansion of the true
solution

χq−1(u, ε) :=
χ̌q(u, ε)

[χq, χ̌q](u)
.
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Behavior at infinity

In the limit x → −∞, equation

ψ(x + ib) + ψ(x − ib) = (ε− 2 cosh(2πbx))ψ(x)

is approximated by the equation

ψ(x + ib) + ψ(x − ib) = − e−2πbx ψ(x),

where, in the left hand side, any one of the two terms can be
dominating giving rise to two possible asymtotics

ψ(x)|x→−∞ ∼ eεiπx
2+2πηx , ε ∈ {±1}, η := (b + b−1)/2.

Thus, there are two solutions of the form

ψε(x) = eεiπx
2+2πηx φε(x), φε(x)|x→−∞ = O(1), ε ∈ {±1}.

with the identification φε(x) = χq−ε(u)χqε(u).
The general, exponentially decaying at x → −∞, solution is of the
form

ψ(x) = e2πηx
∑

ε∈{±1}

Aε eεiπx
2
φε(x)
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Ansatz for the eigenfunction

ψ(x) := b−1 eπiσ
2−ξπi/4 e2πηx+iπx2 χ̌q(u)χq(u) + ξχq(u)χ̌q(u)

θ1(su, q)θ1(s−1u, q)
.

where

[χq, χ̌q](u) = %θ1(su, q)θ1(s−1u, q),

θ1(u, q) :=
1

i

∑
n∈Z

(−1)nq(n+1/2)2un+1/2,

with certain functions s = s(ε, q), % = %(ε, q), s := e2πbσ, and the
variable ξ ∈ {±1} is the parity of the eigenstate: ψ(−x) = ξψ(x).
The function is real ψ(x) = ψ(x) (thus modular invariant
b↔ b−1) and exponentially decays at both infinities

|ψ(x)| ∼ e−2πη|x |, x → ±∞.
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The quantization condition

The quantization condition is the analyticity condition for ψ(x)
with complex x in the strip

Sb :=
{
z ∈ C | |=z | < max(|<b|, |<b−1|)

}
.

Define

Gq(u, ε) :=
χq(u, ε)

χ̌q(u, ε)
, Gq(u, ε)Gq(1/u, ε) = 1, ∀u ∈ C6=0.

Theorem

Let ε = ε(σ) be such that [χq, χ̌q](u) = %θ1(su)θ1(s−1u) for any

u ∈ C, and assume that s 6∈ ±qZ (recall that s = s(σ) = e2πbσ).
Then the eigenfunction ψ(x) does not have poles in the strip Sb if
the variable σ is such that Gq(s, ε) = −ξGq(s, ε). Moreover, in
that case, ψ(x) is an entire function on C.
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