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Knowledge can only arise from ignorance

If you want to learn what | understand read
my papers. Today | will only discuss things
which | do not understand.

Freeman Dyson

(at one of Joel Liebowitz’s statistical
mechanics conferences in the 1980’s.)
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Outline

1. What is integrability?
The 45 degree paradox

2. Differential equations
Are we forever stuck at Painlevée VI?

3. The meaning of partition function zeros
The tyranny of the Lee-Yang pinch

4. What is universality?
IS most physics nonuniversal?
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1. What Is integrability?

The term‘integrability” has been imported into the Euclidean
statistical mechanics of lattice systems from the classica
mechanics of dynamical many body problems and is used to
refer tosystems which have the property of commuting transfer

matricesintroduced by Baxter in 1969. However, Baxter himself
never uses the term.

However,in classical dynamics time and space play different
roles whereas in statistical mechanics all directions lagesame.
These differences are worth examining in detail.
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1. In classical mechani¢sne is continuousand Hamilton’s
equations arérst order in time derivativesThis restricts the
analogue lattice statistical mechanical system in 2 ways:

a) Thecontinuity in timeis replaced by &anslationally invariant
Interaction in one specified direction

b) First order derivativeare replaced byearest neighbor
Interactions in the specified direction

2. No such restrictions need to be placed on the analogueof th
spatial dimensions. However, if we want an isotropic mobeht
Interactions in the the spatial dimension must also be geare
neighbor and translationally invariant.
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Construction of models

With these restrictions we have oriyproperties to specify
further for an integrable model

1. The degrees of freedowhich go into the nearest neighbor
translationally invariant transfer matrix. Various chescgive
Ising, 8 vertex, hard hexagon and chiral Potts.

2. The direction which i1s chosen to b® direction of transfer

But, as pointed out by Baxtemodels may be exactly solved

which are not integrablelThe most famous of these models is the
Ising model.
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The 45 degree paradox

In 1968 TT Wu and | investigatddyered Ising models where the
vertical interactions are equal in a row but vary from rowaavr
with a probabillity distribution We used a row to row transfer
matrix. The transfer matrices in different rows do not conenu
and the eigenvectors of thess matrices vary from row to ragv an
we applied Furstenburg’s theory of random matrix products
(which isnot the same thing as a product of random matjices

The next year Rodney Baxter studied the row transfer mafrix o
similarly layered 6 vertex model which contains as a spaexaake
two decoupled Ising models rotated by 45 degrees. Baxtedfou
that the eigenvectors did not depend on the layering andhbat
transfer matrices commutedihis discovery of Baxter lead to
fame, fortune, Yang/Baxter equations and quantum groups.
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Baxter's methods of commuting transfer matrices and fomet
equations cannot be applied to the layered row Ising model.

Nevertheless for the Ising models the free energy, spoatane
magnetization and all correlation functions are computetdout
any use of the commutation properties of the 45 degree tate
transfer matrix. All correlations are given by determirg(ih an
Infinite number of ways).

In particular both the diagondl' (N, N) and the ronC' (0, N)
correlations are given a8 x N Toeplitz determinants which
look remarkably similar.
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Row/diagonal correlations
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a; = e 2P tanh ELG oy = e 2EnB coth E, 0B
C'(N, N) is given by the determinant with

a1 =0, oy = (sinh2BE, sinh28E,)"}
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2. Differential equations

The determinant for the diagonal correlatioiiN, N) has the
remarkable property that it is the solution a (nonlineanpkeaé

VI equation. This was discovered by Jimbo and Miwa in 1981
which generalizes the result of Wu, McCoy, Tracy and Barouch
who found in 1976 that in the scaling limdt( NV, V) satisfies a
Painlevé Ill equation.

The relation (if any) of this result to integrability is undwn (at
least to me).
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Painlevé for C'(N, N)

ForC(N, N) define forT" < T.
t = a5 = (sinh 2E,3sinh 2E),3) 2
dInC_(N,N) t

on(t) = t(t — 1) _ L

dt 4

and forT > T.
t — 1/043 = (sinh 2F, 3 sinh 2Ehﬁ)2

dth+(N,N) 1

on(t) = tt — ) —— -

= N? ((t—l)a—0>2—4a ((t—l)z—i—a

(54
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Painleve VI

This ODE forC'(N, N) is a special case of the general sigma
form of the Painleve VI equation

dh d2 \ 2 dh dh ?
— (t(t _ 1)E> + [% <2h — (2t — 1)E> + b1bzb3b4]

C(dh L (dh L\ (dh L\ (dh

Since the discovery in 1981 of Painlevé VI fOf N, N) and the
earlier discovery of Painlevé 1l for th€ — T, scaledC (N, N)
there have been many physics applications of the six Panlev
nonlinear ODE’s, particularly in random matrix theory.
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Painlevé Property

An ordinary differential equation or a completely integebet
of partial differential equations is said to have the Paiale
property If the locations of branch points and essential
singularities do NOT depend on the boundary conditions.
Are the six Painlevé equations very special or are thererothe
nonlinear equations waiting to be discovered for other msys
problems? The simplest generalization would seem to be
C'(0,N).

The Painlevé equations are very special solutions of the
Schlesinger equations of deformation theory ald, N) does
satisfy the deformation equations. However the compheati
thata; # 0 has thus far imposed problems which have not been
overcome.
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Fuchsian deformation theory
dY (2) :zn: A, Y (2)

dz — Z — a;
j=1

The A; aren x n diagonalizable matrices. Monodromy
preser</at|on IS equivalent to

(9Y Aj )
e ()= TV (E) =L

which is equivalent to a completely integrable system of

non-linear differential (Schlesinger) equations

0A;  |Aj, Ayl 0A; 3 A — Ayl

Jay a; — ay a; — a

k7
with the one form
w=dlnt = Z TrA; AgdIn(ar — ay)

j<k
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Deformation and determinants

There Is a theorem that aw x N Toeplitz determinant with a
generating functior'( z) of product form

C(z) =]z —ay)”

Jj=1

IS ther function of a2 x 2 Fuchsian deformation equation with
poles atz,; and eigenvalues depending &nand V.

For C'(N, N) the singularities may be set@tl, ¢t andoo.

For C(0, N) the singularities may be set@to;, as, a; ', a7, 0o
SoC(0, N) is ther function.
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Okamoto

There is another theorem that the Schlesinger equationsecan
rewritten as a Hamiltonian system with theas the “times” with
Hamiltonians/; depending on new variables, g, .

For C(N, N) there is only one Hamiltonian and Okamoto was
able to eliminate the auxiliary variablesq from the
Hamiltonian equations to get the ODE for Painlevé VI.

This step is missing fo€'(0, N).

Open guestions:

1. How can nonlinear partial differential equationsinandas
be found forC'(0, N)?

2. Do ordinary non linear equations exist 100, N )?
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Inspiration from Myers

Painlevé equations (and possibly deformation theoryf)taadre
Introduced into physics in the 1964 paper of

John M. Myers Wave Scattering and geometry of a strip, J. Math
Phys. 6 (1965) 1839-184Gastonishingly this paper has only 30
references in 52 years!).

This lead directly to the Plll result in 1976 for the scaleihds
correlation.

Myers has a second profound paper which is almost completely
unknown

John M. Myers, Derivation of a matrix Painlevé equation
germane to wave scattering from a broken corner, Physica D11
(1984) 51-89which has only 3 citations in 33 years!)
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Matrix Painlevé of Myers

The broken corner has conducting stripg@t sin «) to
(0, 400) and(t cos «, 0) to (+00, 0).
Myers then finds an ordinary nonlinear equatiort in

Pu 0w\ ou ou
ot tot) ot ot
—wD(a)wD(a)w + D(a)w ' D(—a) =0

wherew IS a2 x 2 matrix and

D( ) cosa 0
Q{ p—
0 Sin o

Note, if D(«) is replaced by andw is diagonal this reduces to
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Block Toeplitz determinants

Myers broken corner is surely a deformation problem with
matrices larger tha x 2 even though Myers does not use the
formalism of Jimbo, Miwa and Ueno. The question now arises:
Are n x n block Toeplitz determinants related to somex m
matrix deformation problem which generalizes the relatbn
scalar Toeplitz determinants Pox 2 deformation problems.

The most natural problem to investigate are correlatiorieen
Ising model in the magnetic field /kT = 7 /2 where in B.M.
McCoy and T.T. Wu, Phys. Rev 155 (1967) 438-452 the row
correlation is shown to beax 2 block Toeplitz determinant
with a matrix kernel which factorizes. The spontaneous
magnetization and leading large separation behavior was
computedlt is overwhelmingly probable that this is related to
some very special matrix deformation probleasstnding versus ignorance - p 20142



Myers for C'(M, N)?

Myers broken corner problem is more general than the linear
translational deformations used to obtain the Plll equafoo
scattering by a strip. This leads to the suggestion that
deformation theory can be applied to formulations of Ising
correlations which give determinants which are not Toeplit
Indeed, while all Ising correlations can be written as
determinants (in many equivalent ways) most of these
determinants are not Toeplitis the general correlation

C' (M, N) ther function of somen x m deformation problem
with m > 27
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Beyond isomonodromic
deformation?

We finally need to acknowledge that while all equations cgmin
from deformation theory have the Painleve propéntyre are
many ODE'’s of order higher than two which have the Painlevé
property which do not come from isomonodromic deformation
Perhaps the most famous of these is the Chazy Ill equation
which has a natural boundary. This is the sort of equatiorcivhi
might characterize the Ising susceptibility.
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3. Partition function zeros

Zeros of the partition function have been used to charaseri
phase transitions since the 1952 papers of Lee and Yang on the
Ising model.

1. For finite sizes there are no zeros on either the positive
temperature or positive fugacity axis.

2. In the thermodynamic limit the loci of zeros splits the
temperature and/or fugacity plane into several discomuect
regions. Each region corresponds to a different phase of the
system.

3. In the zero free regions of the plane the free energy isyainal
and correlations decay exponentially
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The tyranny of point pinches

In all cases studied numerically zeros pinch the positive
temperature or fugacity axis only in points.

For temperature zeros this point defines a temperatuvenere
1. Spontaneous magnetization sets in

2. The free energy has a singularity

3. The susceptibility has a singularity

4. Correlations are algebraic

The existence of a point pinch is needed for a field theory
description.

Since Lee and Yang this picture dominates the scenario of
second order phase transitions.
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Problems with pinches

1.There are actually NO studies of zeros using the varizbie
7 where the partition function is entirénstead we use variables
such asc = e~ 22/*T which makes the partition function a
polynomial. For the anisotropic Ising model this forces a
restriction toFE), / E, being an integer.

2. The more significant problem is that there are important
problems where point pinches may not occur but there may be
line pinches instead.

The physics of rare events.

Long range interactions
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Physics of rare events

The Ising model with quenched random bonds is defined by

£ =— Z{Eh(j’ k)0 k0jks1 + Ey(J, k)05 60501k )
7.k

where the bond#’, (4, k) and E,(j, k) are chosen randomly with
a probability distribution.
There are two classic studies of this model done in the late
1960'’s.
1. The layered two dimensional model/t= 0 as a function of
T.
2. The fully random model in 2 and 3 dimensions for fixeas
a function ofH.
These papers initiate the physics of rare events into statis
mechanics.
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Griffiths temperatures

The free energy of the random bond model in the
thermodynamic limit approaches a unique limit with protgbi
one.Of course, a periodic array of impurities will act like a
translationally invariant lattice with a large unit cellhdse
configurations will have measure zero. Similarly fractdti¢tzes
built on a recursion scheme will have zero measure.

Let £V (and E£') be the strongest (and weakest) bond strengths
allowed by the probability distribution and I&t(EY) and

T.(E*) be the critical temperatures the pure nonrandom lattice
with interactionsEY andE*.

Question: Will there be zeros which pinch the entire line
segment betweeh.(E*) andT,.(EY)?

Understanding versus ignorance — p.27/42



The layered model

B.M. McCoy and T.T. Wu, Theory of a two dimensional Ising
model with random impurities I: Thermodynamics, Phys. Rev
176 (1968) 631-643; Il spin correlation functions. Physv.Re
188 (1969) 982.

B.M. McCoy, Theory of a two two dimensional Ising model with
random impurities lll boundary effects, Phys. Rev. 188 ()96
1014;1V, Phys. Rev. B2 (1970) 2795

The bulk specific heat has an infinitely differentiable silagty

at thel, where spontaneous magnetization sets in.

The boundary row magnetic susceptibility diverges in a
temperature region around.

ForT.(E") < T < T.(EY) the average row correlation decays
with a temperature dependent power law.
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Site diluted fully random

R.B. Griffiths, Nonanalytic behavior above the critical
temperature in a random Ising ferromagnet Phys. Rev. L2#s.
(1969) 17-19.

P(E) = po(E — Eo) + (1 —p)o(E)

Griffiths shows that for all” below theT.(p = 1) of the pure
casep = 1 that the magnetization/ ( H) is not an analytic
function of H at H = 0 (even belowr,.).

Giffiths also states without proof that there will be zeros fo
T<T.(p=1).

This seems to be the first time that it is suggested that
temperature zeros can pinch in line segments
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T.(E*) <T < T,(EY)

Layered model:

The known effects of randomness/it= 0 are sevebut nothing
in the bulk is known about analyticity af/ (H) at H = 0; The
region forT,(E") < T < T.(EVY) is a separate phaslkfferent
from the ordered phasg < T.(E") and the disordered phase
T.(EY) < T. Rare events are clearly very important.

Fully random model:

Subsequent to Griffiths’ work it has been shown that for

T, < T < T.(EY) the singularities inV/ ( H) are infinitely
differentiable essential singularities. and at leagt.ift" ) =
the correlations decay exponentially. HQ(E) < T < T,
nothing beyond Griffiths seems to have been compulée.
Influence of rare events is far less clear than for the layered
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Random zeros

With probability one the limiting distribution of zeros ihe
thermodynamic limit of any one random collection of bond# wi
characterize the systerilowever. the partition function in the
temperature variable while it is entire is not a polynomiadl ano
computations of temperature zeros has ever been dostead
the following two special cases which are polynomials in

z = e 2E0/KT can give insight.

1. P(F) =pd(F)+ (1 —p)d(E — Ey) (This is the bond diluted
case and has one of the Griffiths temperatures at zero)

2. P(F) =pé(E — Ey) + (1 —p)o(E — 2Ey)
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From lwan Jensen

26x26 Dens: 3/8

A W ro = o - N w IN

1 26x26 Dens: 1/128

u\*‘;
{( \ x‘
w:-* "*.-. »

Partition function zeros for the bond dilute model In
the complex plane = e~ #/*T for p = 3/8 and

p=1/128 fora26 x 26 lattice.
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An Interpretation

These plots have the interpretation that in the
thermodynamic limit zeros will fill an area in the
complexz plane which includes the segment

0<2<+vV2—-1=0414---.

This is In distinct contrast with the field theory
approach to randomness which is based on the
scenario of a point pinch.
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Long range Ising mode|

The other model of interest is the long range Ising model in 2
dimensions defined by

OviOrk
po Y
rj — [

r; 7T

This model Iis important to extend the Lee-Yang lattice gad@ho
of the critical point from short (finite) range interactiotusthe
long range attraction of a Lenard-Jones 6-12 potential.

The following properties have been known for decades:

1. ForT > T, the correlationgoo,) decay ad /|r|***

2. There are three regions of algebraic decay at 7.

s>T7/4, 1<s<7/4, 0<s<1
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Long range zeros

What is quite unknown is the behavior of the correlations for

T = T,.. The algebraic decay of the correlations strongly
suggests that there Is a segment of zeros pinching theyzositi
temperature axisThis in turn suggests that field theory methods
are not sufficient to study' £ T...

However, absolutely no computations of zeros have ever been
done.
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4. What Is universality?

The standard and most restrictive definition of a univetgall
class is that the singularities ‘at are the same for all models in
the classAs an example, for the long range Ising model, with
7/4 < s the long distance decay of the two point correlation is
(believed) to be independent ofind Iis the same as the decay of
the correlation for the nearest neighbor model-'/4.

Does any of this universality extend 10+# 1.7

In particular does the multiparticle representation of($waled)
Ising two point function of the nearest neighbor model found
1976 and incorporated in Plll and PVI extend to the long range
model with7/4 < s?
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An immediate problem

The first obstacle to a universal particle structure for tiveg|
range Ising model is that the two point function decay$ /as™*
instead ofe—"/¢ /r'/2 as required for a particle interpretation.

There Is a cheap way to argue this away by comparing the
leading exponential decay of the nearest neighbor model nea
T =T.wherex = (T — T,)r is order one

e—az

r1/2

(T — T,)Y4

with the powerlaw decay
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Computation of C'(T)

<O_Oo_r> _ Z—l E :O' O_regg/kT+8L/kT
o=*1

1
((:0 — —EZO’j_|_1,kO'j’k_|_1 ((:L —F Z ‘I'] — I'k‘2+ O'rJO'rk_
7,k rj,ry
Treating the term®z/*T as a perturbatlon
(0000 0¢, )0
000 (000, )0 + 2
< 0 r oYr O IZI; ]CT’I' —I'k’2+s
7tk

The sum over; andr; Is dominated by; ~ 0 andgk ~ T

1
<O-OO_7“> — <0‘00'T>0 + 24 LT Z<O’00'rj>0

CT)/RT = Z<‘70%>0 =x(T)> = (T —T.)""?
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The exponential and powerlaw terms are comparable when

e _ (T L TC)(7/4—|—S) O(T)

172 2+
so that z ~In(T —T,) ")
Soit i C(T 17 =

Then for anyfixed x the exponential dominates the power law
decay. Using

C(T) — (T —T,)" "2

we conclude that the exponential dominates the scalingifamc
for 7/4 < s,
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Particles and universality

Outside of the scaling region far > 7, there is no exponential
decay and obviously no universality with nearest neighbong.

Universality forT” > T, and7/4 < s would mean that there is
some correlation length which divergesiatsuch that the scaled
2 point function is identical with the PlII scaling functiarh the
nearest neighbor model. Howevére restriction tdr/4 < s
Indicates that if there Is a particle interpretation for- T,. and
7/4 < s it will breakdown ats = 7/4.

Even in the scaling regiotiere seem to be no arguments to
prevent the attractive long range force from producing labun
states whose spectrum depends;omhis would be somewhat
like bound states in the nearest neighbor model in the poesein
a scaled magnetic field.
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Summary of ignorance

1. There are no massive lattice models where correlation
functions have been computed using the methods of intdgyabi

2. The applications of deformation theory to statistical
mechanics Is grossly unexplored.

3. Studies of partition function zeros for random bond andjlo
range Ising models are almost nonexistent.

4. We know very little about nonuniversal physics such as the
spectrum of particles fdf' # T..
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Thank You

| will conclude by thanking the organizers for the
opportunity of presenting these problems to the
people best able to solve them.

One thing Is certain. We are not going to run out of
problems to solve.
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