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Transport properties

• Microscopic origins of phenomenological laws (D-diffusion constant,

σ-conductivity, J-current, h-field, χ-static susceptibility)

J = σ∇h
D =

σ

χ

• Integrable systems can exhibit

1. Ballistic X

2. Diffusive (Heisenberg XXZ ∆ > 1, Hubbard)?

3. Anomalous?
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Lower bound on diffusion constant

M. Medenjak, C. Karrasch, T. Prosen, Phys. Rev. Lett. 119, 080602 (2017)

• Integrable systems are characterized by ballisticaly propagating

excitations → typically ballistic transport

• No local charges with appropriate symmetry → absence of ideal

transport

• The charges are absent for ∆ ≥ 1

E. Ilievski, J. De Nardis, Phys. Rev. Lett. 119, 020602 (2017)
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Connection of diffusion constant and Drude weight

• Diffusion constant diverges in sectors away from half-filling

• Relative fraction of these states vanishes in TD limit

• Infinite conductivity from the states with measure zero, yields finite

contribution to diffusion constant (D-Drude weight, the rate of the

divergence of conductivity)

• Using LR theorem and clustering property of thermal state we get

D(β) ≥ Const.× ∂2

∂x2
D(β, x)

∣∣∣
x=0

,
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Heisenber XXZ model

• Lower bounding the curvature of Drude weight:

K x
s,s′ = lim

n→∞

1

n
〈Xs(λ),Xs′(µ)〉0,xn ,

Jxs (λ) = lim
n→∞
〈j ,Xs(λ)〉0,xn ,

Jxs′(µ) =
∞∑

s=1/2

∫
dλ hxs (λ)K x

s,s′(λ, µ)

D(0, x) =
∞∑

s,s′=1/2

∫
dλ

∫
dµ K x

s,s′h
x
s (λ)h̄xs′(µ).

• Lower bound for Heisenberg from local IM (∆ = cosh γ):

D(0) ≥ cosh(γ)

3 vLR

(
e−γ +

2 sinh γ√
1 + e2γ + e4γ + 2 + e2γ

)
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Exact results for transport coefficient

M. Medenjak, K. Klobas, T. Prosen, Phys. Rev. Lett. 119, 110603 (2017)

• Classical cellular automaton

• Positive, negative charges (elastic scattering) and vacancies
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• Three regimes:

1. Ballistic (Imbalance of charge µ 6= 0)

2. Diffusive (Density of particles ρ 6= 1)

3. Isolating (Density of particles ρ = 1)
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Exact results for transport coefficient

Central observations

• Conservation of total charge (imbalance subspace A(1))

• P a linear projector P : A(1) → AJ

• 〈J(1− P)a〉p = 0 for every a ∈ A(1)

Imply

• The dynamics of correlation functions can then be restricted to AJ ,

i.e. U = PSUeP
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• Exact results on time dependent autocorrelation functions and

inhomogeneous quench problem (choosing appropriate

time-dependent basis)
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• Dimerization ρ1 6= ρ2 → ballistic transport

(Exact results)

1. Step function profile moving with a constant velocity

2. Diffusive corrections to the step function profile

• Hydrodynamics

1. Systems locally equilibrate to ρGGE (ζ) → all of the local observables

depend only on expectation values of local integrals of motion.

2. Continuity equation is satisfied:

∂tq(x , t) + ∂x j(x , t) = 0

3. General ρGGE is known.

4. Yields correct dressed velocity of the domain wall solution
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Merging the results

• The lower bound saturates the expression for diffusion constant

• If we add tunneling (particles tunnel through each other with certain

probability) → lower bound does not saturate the result.
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Conclusion

• Two contributions to diffusion coefficient: ballistic and tunneling

• Diffusive corrections using hydrodynamics

• Understanding the transport properties of XXX spin chain

• Obtaining explicit time dependence for more complicated systems.
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