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Multidimensional consistency (MDC) on the lattice

Quadrilateral P∆Es on the 2D lattice:

Q(u,T1u,T2u,T1T2u; p1, p2) = 0

notation of shifts on the elementary
quadrilateral on a rectangular lattice:

u := u(n1, n2), T1u = u(n1 + 1, n2)
T2u := u(n1, n2+1), T1T2u = u(n1+1, n2+1)
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Consistency-around-the cube:
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Verifying consistency: Values at the black disks are initial values, values at open
circles are uniquely determined from them, but there are three different ways to
compute T1T2T3u.



Examples
Using the abbreviations:

ũ = T1u, û = T2u, ̂̃u = T1T2u,

associated with parameters p1 =: p, p2 =: q respectively, we have
Linear quad-equation

Q(u, ũ, û, ̂̃u; p, q) = (p − q)(û − ũ)− (p + q)(̂̃u − u) ,

lattice potential KdV eq. (H1)

Q(u, ũ, û, ̂̃u; p, q) = (p − q + û − ũ)(p + q + u − ̂̃u)− p2 + q2 ,

lattice Krichever-Novikov eq. (Q4) [Adler, 1998]

Q(u, ũ, û, ̂̃u;α, β) = p(uũ + û̂̃u)− q(uû + ũ̂̃u)
−r(û̃u + ûũ) + pqr(1 + uũû̂̃u) ,

where the lattice parameters are in terms of Jacobi elliptic functions:
p =

√
k sn(α; k) , q =

√
k sn(β; k) , r =

√
k sn(α− β; k) .

Consistency-around-the-cube is by direct computation for these examples. In the linear
case it boils down to the key partial fraction identity

Sp,qSr,q + Sp,rSq,r + Sp,rSp,q = 1 ,Sp,q :=
p + q

p − q
.

MDC implies many main properties of the quad-equation (Lax pair, Bäcklund
transforms, exact (e.g. soliton type) solutions).
Main question: How to capture MDC in terms of a variational principle?



This question was answered in a series of recent papers:
• S. Lobb & FWN: Lagrangian multiforms and multidimensional consistency, J. Phys.
A:Math Theor. 42 (2009) 454013
• S. Lobb, FWN & R. Quispel, Lagrangian multiform structure for the lattice KP
system, J. Phys. A:Math Theor. 42 (2009) 472002
• S. Lobb & FWN, Lagrangian multiform structure for the lattice Gel’fand-Dikii
hierarchy, J. Phys. A:Math. Theor. 43 (2010) 072003
• A. Bobenko and Yu. Suris, On the Lagrangian Structure of Integrable
Quad-Equations, Lett. Math. Phys. 92 (2010) 17–31
• P. Xenitidis, FWN & S. Lobb, On the Lagrangian formulation of multidimensionally
consistent systems, Proc. Roy. Soc. A467 # 2135 (2011) 3295-3317
• S. Yoo-Kong, S. Lobb and FWN, Discrete-time Calogero-Moser system and
Lagrangian 1-form structure, J. Phys. A: 44 (2011) 365203
• J. Atkinson, S.B. Lobb and FWN, An integrable multicomponent quad equation and
its Lagrangian formalism, Theor. Math. Phys 173 (2012) # 3 pp. 1644-1653
• S. Yoo-Kong and FWN, Discrete-time Ruijsenaars-Schneider system and Lagrangian
1-form structure, arXiv:1112.4576 (Dec. 2011)
• Yu. Suris, Variational formulation of commuting Hamiltonian flows: multi-time
Lagrangian 1-forms, J. of Geometric Mechanics 5 (2013)
• R. Boll, M. Petrera and Yu. Suris, What is integrability of discrete variational
systems? Proc. Roy. Soc. 470 (2013).
• A.Bobenko and Yu. Suris, Discrete pluriharmonic functions as solutions of linear
pluri-Lagrangian systems, CMP 336 (2015) 199.



Lagrangian 2-form structure (classical case)
The quad-equation can be consistently embedded into a multidimensional lattice, with
directions labelled by subscripts i , j , k, . . . :

(pi + pj )(Tiu − Tju) = (pi − pj )(u − TiTju)

This has the consistency-around-the-cube property.
This and other quad equations come from a variational principle on the 3-point
Lagrangian:

Lij (u,Tiu,Tju) := L (u,Tiu,Tju; pi , pj ) = u(Tiu − Tju)−
1

2

pi + pj

pi − pj
(Tiu − Tju)

2

The discrete Euler-Lagrange (EL) equation

∂

∂u

(
Li,j (u,Tiu,Tju) + Li,j(T

−1
i u, u,TjT

−1
i u) + Li,j(T

−1
j u,T−1

j Tiu, u)
)
= 0

gives a weak form of the quad-equation: sum of two copies shifted over a diagonal.
Key observation: The Lagrangian above possesses a closure property:

∆1L23(u) + ∆2L31(u) + ∆3L12(u) = 0

on the solutions of the quad-equation. Here ∆i = Ti − id is the difference operator in
the i th direction.
• The closure property (which holds for all MDC quad equations) holds the key to a
new variational description which allows one to capture multidimensional consistency
in a Lagrangian framework using Lagrangian multi-forms.



Classical Two-form Structure
We define the action as the sum of the Lagrangians over a surface σ

Action functional on a discrete (oriented) surface :

S[u(n); σ] =
∑

σij (n)∈σ

Lij(n)

where Lij (n) = −Lji (n) has the interpretation of a discrete Lagrangian 2-form:
These are antisymmetric expressions of the
form:

Lij (u(n)) = L (u(n), u(n+ ei ), u(n+ ej ); pi , pj )

defined on elementary oriented plaquettes, in a
multidimensional lattice, characterized by
ordered triplets σij (n) = (n, n+ ei , n+ ej )

n

ei

ej

In addition to variations of the dependent variables u → u + δu , we also require the
action to be stationary under variations of the surface.



Lattice action for the closed cube surface

To derive elementary configurations we need action over the (decorated) full oriented
cube:

TiTju

Tiu

u

TiTku

Tku

TjTku
Tju

TiTjTku

Figure : Decorated cube.

This gives rise to a lattice action functional:

S[u; cube] = Li,j (u,Tiu,Tju) + Lj,k(u,Tju,Tku) + Lk,i (u,Tku,Tiu)

−Li,j (Tku,TiTku,TjTku) − Lj,k(Tiu,TiTju,TiTku)− Lk,i (Tju,TjTku,TiTju).

The faces joining each vertex involved in the action will give rise to the various
elementary surface configurations: the elementary actions that will lead to the
fundamental system of EL equations.



Elementary configurations for lattice action
Over curved quad-surfaces we need the following types of elementary configurations:

Figure : Elementary lattice configurations in 3D.

The action functionals corresponding to these configurations give rise to the
fundamental system of EL equations for the Lagrangian:

(EL1)
∂

∂u

(
Li,j (u,Tiu,Tju) + Lj,k (u,Tju,Tku) + Lk,i (u,Tku,Tiu)

)
= 0,

(EL2)
∂

∂u

(
Li,j (T

−1
i u, u,T−1

i Tju) − Lj,k (u,Tju,Tku) + Lk,i (T
−1
i u,T−1

i Tku, u)

)
= 0,

(EL3)
∂

∂u

(
Lj,k (T

−1
j (u), u,T−1

j Tku) + Lk,i (T
−1
i u,T−1

i Tku, u)

)
= 0.

(up to permutations of the lattice indices).
Furthermore, imposing that the action remains invariant under (discrete) deformations
of the surface (allowing the above equations to hold simultaneously) the system is
supplemented with the closure relation:

(EL4) ∆iL (u,Tju,Tku; pj , pk ) + ∆jL (u,Tku,Tiu; pk , pj ) + ∆kL (u,Tiu,Tju; pi , pj ) = 0 .



Main hypothesis: The solutions of the above linear system of equations for the
Lagrangians Li,j correspond exactly to the Lagrangian components for integrable (in
the sense of multidimensional consistency) quad-lattice systems.

Possible New Foundational principle: Lagrangians of a fundamental theory should
emerge as solutions of a least-action principle involving not only criticality w.r.t.
variations in the dependent variables, but also w.r.t. the variations of the geometry in
the independent variables. I.o.w. they should arise as solutions of set of extended EL
equations, i.e. emerge from the variational principle itself, rather than being posed by
tertiary considerations.



Analysis of the EL system
Analysing the fundamental EL system (EL1)-(EL4) under the assumption that
u,Tiu,Tju,Tku are independent and can be chosen arbitrarily, and considering the
functional dependence on the arbitrary parameters pi , pj , pk we arrive at the following:

Theorem
Suppose u,Tiu,Tju,Tku are independent and can be chosen arbitrarily. Eq (EL1)
implies that the anti-symmetric Lagrangian Li,j = (u,Tiu,Tju; pi , pj ) has the form

Li,j(u,Tiu,Tju) = Ai (u,Tiu)− Aj (u,Tju) + Bi,j (Tiu,Tju),

where Ai (u,Tiu) = A(u,Tiu; pi ), and Bi,j(Tiu,Tju) = B(Tiu,Tju; pi , pj ) for some
functions A, B of the arguments and lattice parameters, where Bi,j = −Bj,i is
antisymmetric in the i , j-arguments.

Furthermore, from the eqs (EL2), (EL3) one can deduce the following:

Theorem
The Euler-Lagrange equations (EL2),(EL3) determine the following relation on each
single quad:

(QEL)
∂

∂u

(
Li,j(T

−1
i u, u,T−1

i Tju)

)
=

∂

∂u

(
Aj (u,Tju)

)
,

where Aj is determined up to an (direction-independent) function h(u), which w.l.o.g.
can be absorbed into Aj .

The latter equation, in fact, leads directly to the quadrilateral lattice equation
Q(u,Tiu,Tju,TiTju; pi , pj ) = 0.



Example: quadratic 3-point Lagrangian 2-forms
Let us consider the general homogeneous quadratic Lagrangian 2-form component,
which must be of the form:

Li,j(u,Tiu,Tju) = Ai (u,Tiu)− Aj (u,Tju) + Bi,j(Tiu,Tju) ,

by setting:

Ai (u,Tiu) =
1
2
aiu

2+a′iuTiu+
1
2
a′′i (Tiu)

2 , Bi,j =
1
2
bij (Tiu)

2− 1
2
bji (Tju)

2+b′ij (Tiu)Tju ,

where b′ji = −b′ij . Applying the eq. (QEL) in the form:

∂

∂Tiu

(
Lij(u,Tiu,Tju)

)
=

∂

∂Tiu

(
Aj (Tiu,TiTju)

)
,

(which holds for all directions i , j) we obtain the linear quad-equation:

a′iu + (a′′i + bij − aj)Tiu + b′ijTju = a′jTiTju .

Since these hold for arbitrary i , j-labels we obtain the conditions:

a′i
2 = a′j

2 , and (a′′i + bij − aj)a
′
i = a′jb

′
ji .

Setting a′i = a′j =: a′ and implementing the other condition we get the quad equation:

TiTju = u + 1
a′
b′ij (Tju − Tiu) , with Lagrangian:

Li,j =
1
2
(ai − aj )u

2 + a′u(Tiu − Tju) +
1
2
aj (Tiu)

2 − 1
2
ai (Tju)

2 − 1
2
b′ij (Tiu − Tju)

2 ,

where the terms with ai can be removed w.l.o.g., and we can set a′ = 1. The closure
relation (EL4) leads to the functional relation

b′ij(b
′
ik − b′jk ) = 1− b′ikb

′
jk ⇒ b′ij = (1− PiPj)/(Pi − Pj ) ,

in terms of new lattice parameter Pi := b′i,k0 (with k0 fixed).



Universal Quadrilateral 3-point Lagrangian
Under the assumption that resulting quad equation is an affine-linear equations for a
scalar dependent variable u = u(n) of the quad-lattice:

Qpi ,pj (u, ui , uj , uij ) = 0 , ui := u(n + ei ) , uij := u(n+ ei + ej ) ,

(where pi , pj , and where the quad function Q possesses the symmetries of the square:

Qpi ,pj (u, ui , uj , uij ) = Qpi ,pj (ui , u, uij , uj ) = Qpi ,pj (uj , uij , u, ui ) = −Qpj ,pi (u, uj , ui , uij )

the general solution (up to constant direction-independent factor) for the Lagrangians
was found [P. Xenitidis, F.W. Nijhoff & S. Lobb,Proc. Roy. Soc. 467 (2011)]:

L (u, ui , uj ; pi , pj ) =

∫ u

u0

∫ ui

u0
i

dx dy

hpi (x , y)
−
∫ u

u0

∫ uj

u0
j

dx dy

hpj (x , y)
−
∫ ui

u0
i

∫ uj

u0
j

dx dy

hpij (x , y)

+

∫ ui

u0
i

dx

∫ Y (u0,x,u0ij )

u0
j

dy

hpij (x , y)
+

∫ uj

u0
j

dy

∫ X (u0,y,u0ij )

u0
i

dx

hpij (x , y)

where the limiting functions X and Y are solutions of the equations

Qpi ,pj (u
0, x ,Y , u0ij ) = 0 respectively Qpi ,pj (u

0,X , y , u0ij ) = 0 .

Here the denominators hp(x , y) in the integrand are biquadratic functions associated
with Q, defined by the discriminant relations:

QujQuij − Q Quj uij =: Kpi ,pj hpi (u, ui ) , Qui Quij − Q Qui uij =: Kpj ,pi hpj (u, uj )

and QuQuij − Q Quuij =: −Kpi ,pj hpij (ui , uj )

where Kp,q = −Kq,p is a function of the lattice parameters p, q alone (pij is related to
pi , pj through an addition formula on an algebraic curve).
Remark: The Lagrangian L is in fact a interpolating Lagrangian in that the EL
equations yield the relevant quad equation in both u and u0!



Q4 (lattice Krichever-Novikov) equation

This equation, due to V.Adler (1998) reads:

Qpi ,pj = pi (u ui + ujuij )− pj (u uj + uiuij ) (1)

−pij (u uij + uiuj ) + pipjpij(1 + u uiujuij ) (2)

where pi =
√
k sn(αi ; k) , pj =

√
k sn(αj ; k) , pij =

√
k sn(αij ; k) with

αij = αi − αj . I.o.w. the lattice parameters p = (p,P) = (sn(α; k),
√
ksn′(α; k)) are

points on an elliptic curve in this case. Q4 has arisen as the top equation (master
equation) in the classification of scalar affine-linear quad equations [V.Adler,
A.Bobenko & Yu. Suris, CMP (2003)]
For the biquadratics we have

hp(x , y) = p(1 + x2y2)− 1

p
(x2 + y2) + 2

P

p
xy , Kpi ,pj = −pipjpij

where p = (p,P) are points on the elliptic curve given by
P2 = p4 − (k + 1/k)p2 + 1 and k the modulus of the Jacobi elliptic function.
The double integral in the Lagrangian can be evaluated as:

∫ x1

x0

∫ y1

y0

dx dy

hp(x , y)
= −2

∫ η1

η0

dη log

(
sn(ξ1)− sn(η + α)

sn(ξ1)− sn(η − α)

sn(ξ0)− sn(η − α)

sn(ξ0)− sn(η + α)

)
,

with xi =
√
k sn(ξi ; k) , yi =

√
k sn(ηi ; k) and p =

√
k sn(α; k) .

the latter is an elliptic variant of the dilogarithm function.



Variational equations for continuous Lagrangian 2-forms
Choosing a parametrisation of the surface

σ : p = p(s, t) = (pi (s, t)) , (s, t) ∈ Ω ⊂ R
2 ,

where Ω is some open domain in the space of parameters s, t, we can write for the
action:

S[u(p); σ] =

∫

σ

∑

i<j

Li,jdpi ∧ dpj =

∫∫

Ω

∑

i<j

(
Li,j

∂(pi , pj )

∂(s, t)

)
ds dt ,

We have two types of variations:
• Variations of the surface: σ → σ + σ , (i.e., making a infinitesimal variations
p 7→ p+ δp, in the parametrisation). The closure relation can be obtained by
considering the Lagrangian as a function of the independent variables

L(p(s, t)) :=
∑

i<j

(
Li,j

∂(pi , pj )

∂(s, t)

)
,

and apply the usual EL equations:

δL

δp(s, t)
= 0 ⇒ ∂pi Lj,k + ∂pj Lk,i + ∂pk Li,j = 0 .

• Infinitesimal variations of the dependent variable u 7→ u + δu, on an arbitrary, but
fixed, surface. This has two contributions:
♦ tangential contributions, i.e. from components (∇δu)‖ along the surface;
♦ orthogonal contributions, i.e. from components (∇δu)⊥ orthogonal to the surface.



Lagrange 2-form in 3D space
In the simple case of smooth 2D surfaces σ embedded in R3, and L depending only
on the first jet, we get the following set of equations 1:

• From the tangential contributions:

∑

i<j

[
∂(pi , pj )

∂(s, t)

∂Li,j

∂u
− ∂

∂s

(
∂(pi , pj )

∂(s, t)

pt × n

‖ps × pt‖
· ∂Li,j

∂∇u

)

+
∂

∂t

(
∂(pi , pj )

∂(s, t)

ps × n

‖ps × pt‖
· ∂Li,j

∂∇u

)]
= 0

where n is the unit normal to the surface, and:

• From the transversal contributions:
∑

i<j

∂(pi , pj )

∂(s, t)
n · ∂Li,j

∂∇u
= 0 .

Example: Scalar field Lagrangian giving rise to MDC system of higher-order equations
[FWN, A Hone, N Joshi, 2001] :

Lij =
1
4
(p2i − p2j )

(∂pi ∂pj u)
2

(∂pi u)∂pj u
+

1

p2i − p2j

(
n2i p

2
i

∂pj u

∂pi u
+ n2j p

2
j

∂pi u

∂pj u

)
,

in terms of only u and its derivatives. The Euler-Lagrange equation:

∂

∂pi

∂

∂pj

(
∂Lij

∂(∂pi ∂pj u)

)
− ∂

∂pi

(
∂Lij

∂(∂pi u)

)
− ∂

∂pj

(
∂Lij

∂(∂pj u)

)
= 0 ,

yields a generalization of the Ernst equations of General Relativity, cf. [A Tongas, D
Tsoubelis, P Xenitidis, 2002]



Quantisation of the Lattice Equation

Goal: to apply a multiform path integral approach to quantising the linear lattice
equation.

(pi + pj )(ui − uj ) = (pi − pj )(u − uij )

Lagrangian:

Lij (u, ui , uj ; pi , pj ) = u(ui − uj ) −
1

2
sij (ui − uj )

2 ; sij =
pi + pj

pi − pj

Quantum field theory: discretised space-time, Lagrangian in two dimensions over field
variables u(n) indexed by discrete vector n.

Space-time boundary ∂σ enclosing surface σ.
Action: S [un,m; σ] =

∑
σ L (n).

Propagator (all interior field variables are
integrated over):

Kσ(∂σ) =

∫
[Dun,m] e iS [un,m ;σ]/~

= Nσ

∏

n∈σ

∫
du(n) e iS [u(n);σ]/~

Normalisation and regularisation, denoted by
Nσ .



Surface-independence: the pop-up cube

Main question: What happens to propagator Kσ(∂σ) under variation of the surface σ?

(a)

̂

˜

u

u2

u1

u12L12(u)

(b)

u

u1

u12

u3

u23

u123L12(u3)

L31(u) L23(u1)

Kσ = Nσ exp

(
i

~
L12(u, u1, u2)

)

Spop [un,m] = L23(u1) + L31(u2) + L12(u3)− L23(u) − L31(u)

Kpop = Nσ

∫∫∫∫
du3du31du23du123 exp

(
i

~
Spop [un,m]

)

= NσV
2 2π~

s23
exp

(
i

~
L12(u, u1, u2)

)

Performing in the quadratic case the computations of Gaussian integrals, we find: the
contributions to the propagator from each surface are (up to normalising factor) the
same. Thus, the propagator invariant under this surface-move!



Elementary surface moves
The pop-up cube suggests we have surface-independence in all surface moves. Like in
the classical case we consider three elementary moves that form the basis of the
possible surface deformations.
Move (a):

u

uj ui

uk

(ai)

uijk

ujk uik

uij

uj ui

uk

(aii)

Comparing (ai):

S(ai) = Lij(u) + Ljk (u) + Lki (u) ; K(ai) =

∫
du exp

[
iS(ai)/~

]

with (aii):

S(aii) = Lij(uk )+Ljk (ui )+Lki (uj ) ; K(aii) =

∫∫∫∫
duijdujkdukiduijk exp

[
iS(aii)/~

]

it follows the resulting propagators in K(ai) and K(aii) are the same.



Similar results for the other elementary moves.
Move (b):

u

uj ui

uk

uki

uij

(bi)

u

uj

uk

uki

uij

ujk

(bii)

Move (c):

uj

uk

uki

uij

ujk

uijk

(ci)

u

uj ui

uk

uki

uij

(cii)

Similar calculations, performing Gaussian integrals over the intermediate points, can be
done for moves (b) and (c), leading to identities between corresponding propagators.
Conclusion: For our choice of Lagrangian, the propagator Kσ(∂σ) is independent of
the surface: it depends only on the boundary.



Quantum variational principle for surfaces
• Propagator for general quadratic Lagrangian 2-form over discrete surface σ, with
action S [u(n); σ] as defined before;

Kσ(∂σ) =

∫
[Dun,m] e iS [un,m ;σ]/~ := Nσ

∏

n∈σ

∫
du(n) e iS [u(n);σ]/~ .

In general Kσ(∂σ) is a function of the field variables on the boundary ∂σ and also
depends on the surface σ itself;
• For a special choice of discrete Lagrangian 2-form the propagator Kσ(∂σ) is
independent of the surface σ. This Lagrangian exists at a critical point of the
variation of the surface, such that some of the integrations over field variables reduce
to volume factors;
• The condition of stationarity of propagator under surface moves determines (up to
equivalence) the Lagrangian form (this has been demonstrated for the case of
quadratic 3-point Lagrangians), leading to Lagrangian of the form:

L (u, ui , uj ; pi , pj ) = u(ui − uj )−
1

2
sij (ui − uj )

2 ; sij =
pi + pj

pi − pj
.

• The invariance under surface deformation suggests that one could consider a novel
quantum object obtained by a sum over all surfaces,

K(∂σ) =
∑

σ∈S

NσKσ(∂σ)

leading to a functional of the Lagrangian 2-form components, and which attains a
critical point for Lagrangians for which the usual surface-dependent propagator
Kσ(∂σ) becomes invariant.



One Dimensional Reduction: Discrete Harmonic Oscillator
Reduce quad equations to a finite-dimensional dynamical map imposing (periodic)
initial value problem.
Simplest non-trivial example: reduction of the linear quad-equation

(p + q)(û − ũ) = (p − q)(̂̃u − u) ,

on the periodically repeated initial value configuration:

u0 u1 u2

û2 = u0û0 û1

p

q

Imposing initial data u0, u1 and u2, and letting û2 = u0, we obtain from the
quad-equation the dynamical map: (u0, u1, u2) → (û0, û1, û2):

û0 = u1 + s(û1 − û2) , û1 = u2 + s(u0 − u1) , û2 = u0 ; s :=
p − q

p + q

This is a finite-dimensional discrete system; introducing the reduced variables:

x := u1 − u0 , y := u2 − u1

and, by eliminating y , write the second order ordinary difference equation (O∆E):

x̂ + 2bx + x
̂
= 0 , b := 1 + 2s − s2 ,

where x
̂
denotes the reverse shift to x̂ , is a discrete harmonic oscillator.



Commuting discrete flow
To construct a commuting discrete flow we consider the dynamics in an additional
direction of the lattice, described by lattice equation:

(p + r)(u − ũ) = (p − r)(ũ − u) , (q + r)(u − û) = (q − r)(û − u) .

Consider the diagram:

s s

s

s

❝ ❝

s s s

s

u0 u1 u2

u0 = û2û1û0

u0 u1 u2

u0

Map in the additional direction:

u0 = u1 + t(u1 − u0) ,

u1 = u2 + t(u2 − u1) ,

u2 = u0 + t′(u0 − u2) .

Here:

t :=
p − r

p + r
, t′ :=

q − r

q + r
.

In terms of the reduced variables x = u1 − u0, y = u2 − u1, we get the map
(x , y) → (x , y) given by:

x = y + t(y − x) , y = −y − 1− t

1− tt′
(x + t′x)

leading to

x + 2ax + x = 0 , with 2a :=
(2t + 1− t2)− t′(2t − 1 + t2)

1− t2t′

The maps (x , y) → (x̂ , ŷ) and (x , y) → (x , y) commute provided we have the key
identity on the parameters: stt′ = s − t + t′ .



Corner equations & Lagrangians
Our parametrisation is slightly simplified by introducing the parameters P := p2 + pq ,
Q := q2 and R := r2 , in terms of which

a =
P − R

P + R
, b =

P − Q

P + Q

By combining the maps (x , y) → (x̂ , ŷ) and (x , y) → (x , y) and eliminating y in a
different way, we can derive corner equations for the evolution, linking x , x̂ and x ; or
x̂ , x and x̂ respectively. Thus:

(
P − Q

q
− P − R

r

)
x =

P + R

r
x − P + Q

q
x̂

(
P − Q

q
− P − R

r

)
x̂ =

P + R

r
x̂ − P + Q

q
x

Lagrangian 1-form structure: On the level of the Lagrangian description the
commutativity of the flows x → x̂ and x → x is described by the Lagrangian 1-form
structure. Here, the relevant Lagrangians

La(x , x) =
P − R

r

[
x2 + x2 +

2

a
xx

]
, a =

P − R

P + R
,

Lb(x , x̂) =
P − Q

q

[
x2 + x̂2 +

2

b
xx̂

]
, b =

P − Q

P + Q
,

should be regarded as components of a difference 1-form each associated with a a
direction on a 2D lattice (with given orientation). It obeys, on solutions of the
equations of motion the closure relation:

�L := La(x̂ , x̂)− La(x , x)− Lb(x , x̂) + Lb(x , x̂) = 0



1-form Action functional

The action functional is defined as the
sum [Yoo-Kong, Lobb, FWN, 2010]:

S [x(n); Γ] =
∑

γ(n)∈Γ

Li (x(n), x(n+ei )) ,

over an arbitrary discrete curve Γ in the
space of independent discrete variables
m, n, consisting of connected oriented
links. γi (n) = (n, n+ ei ), (i = a, b) on
the edges of the lattice. m

n

Γ

The closure relation �L = 0, holding on solutions of the equations of motion
(comprising corner equations and the 3-point maps), guarantees that the action is
independent on elementary variations (flips across quadrilaterals) of the discrete curve
Γ (fixing the endpoints).

MDC variational principle: action S must be stationary under variation of the
dependent variables, i.e. x → x + δx as well as under variation of the curve Γ → Γ′

(i.e. varying the independent variables) on the solutions of equation of motion. By
choosing different discrete curves we get the compatible set of lattice equations from
the 1-form structure.



Elementary Action Configurations

All equations of motion now arise as EL eqns from basic configurations of the curve Γ.

i) m

n

x

x̂x

La

L b

ii) m

n

x

x

x

La

L a

Action for curve [i)] is given by

S = La(x, x) + Lb(x, x̂)

= P−R
r [x2 + x2 + 2

a xx ] +
P−Q

q [x2 + x̂2 + 2
b xx̂ ]

EL equation:

∂S

∂x
= 2

[(
P−R

r + P−Q
q

)
x + P+R

r x + P+Q
q x̂

]
= 0

A corner equation.

Action for curve [ii)] is given by

S = La(x, x) + La(x, x)

= P−R
r [x2 + x2 + 2

a xx ] +
P−R

r [x2 + x
2
+ 2

a xx ]

EL equation:

∂S

∂x
= 2

[
2 P−R

r x + P+R
r

(
x + x

)]
= 0

The equation of motion for the “bar”
evolution.



Elementary Action Configurations contd.

Similarly, the other corner equation and horizontal map:

iii) m

n

x x̂

x̂

Lb

L̂a

iv) m

n

x x̂ ̂̂x
Lb L̂b

Action for curve [iii)] is given by

S = Lb(x, x̂) + La(x̂, x̂)

= P−Q
q [x2 + x̂2 + 2

b xx̂] +
P−R

r [x̂2 + x̂2 + 2
a x̂ x̂ ]

EL equation:

∂S

∂x̂
= 2

[(
P−Q

q + P−R
r

)
x̂ + P+Q

q x + P+R
r x̂

]
= 0

The second corner equation.

Action for curve [iv)] is given by

S = Lb(x, x̂) + Lb(x̂, ̂̂x)

= P−Q
q [x2 + x̂2 + 2

b xx̂] +
P−Q

q [x̂2 + ̂̂x2 + 2
b x̂

̂̂x]

EL equation:

∂S

∂x̂
= 2

[
2 P−Q

q x̂ + P+Q
q

(
x + ̂̂x

)]
= 0

The equation of motion for the “hat”
evolution.



Quantum 1-form structure: curve-dependent propagators

In the quantum case the Lagrangian 1-form structure leads to the introduction of
propagators:

KΓ(∂Γ) = NΓ


 ∏

γ(n)∈Γ

∫ ∞

−∞
dx(n)


 e iS [x(n;Γ)]/~ .

In the quadratic case, using Gaussian integrals, these can be computed explicitly.
The following assertions cane be made on the basis of these examples:

◮ For Lagrangians obeying classically the closure relation, the propagators are (up
to normalisation) independent on the curve, i.e. only depend on the end points;

◮ conversely the condition on curve-independence fixes the Lagrangian components
of the Lagrange 1-form up to a (direction independent) factor and up to an exact
1-form (i.e., functions of x(n) trivially satisfying the closure relation.

These assertions can be verified also by the standard (discrete) time-slicing procedure,
starting from a canonical quantization of the classical integrable map.



Quantum variational principle

The analogy between classical and
quantum multiform variational principle
is as follows:

◮ Classical variational principle:
action functional must be critical
w.r.t. variations of both the
independent variables and the
dependent variables (the curve);

◮ Quantum variational principle:
(Feynman type) propagators,
obtained by summing over all
”paths” in terms of the dependent
variable x , considered as functions
of multi-time paths in the
independent variable, are
stationary w.r.t. the variations in
the time-paths Γ.

n

m

(0, 0)

(N,M)

One way to think of this is to conjecture a novel quantum object: a functional of the
Lagrangians, obtained by summing over all time-paths. This object would have critical
points at the ”admissable” Lagrangians, namely those who possess the above property
of stationarity w.r.t. the time-path variations, since it will acquire an infinite number
of equal contributions from all deformed paths P.
The proper definition of such a novel quantum object is under investigation.
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Conclusions

◮ We have formulated a quantum variational principle, based on the notion of MDC
and Lagrangian multiform structures, in terms of quantum (path integral type)
propagators;

◮ The 1-form structure manifests itself as the (discrete-time) path independence of
quantum propagators in multi-time space of independent variables, and was
illustrate on the simplest possible example of a multi-time harmonic oscillator;

◮ The quantum Lagrangian 2-form structure, where the propagators are required to
be invariant under deformations of the surface, was illustrated on the basis of the
quadratic 3-point case;

◮ In both cases the dependence on the (lattice) parameters forms a key aspect,
while in terms of these one should also consider the continuous path integral;

◮ The quadratic case (where computations can be performed explicitly in terms of
Gaussian integrals) seems to reveal many of the main features of MDC on the
quantum level. The aspect that is lost in this case is that of the role of
singularities;

◮ Generalization to higher-order cases (coupled harmonic oscillators) and to
higher-order linear lattice systems (e.g. coupled quad systems) can be readily
done. In the nonlinear (i.e., non-quadratic cases) we expect the integrations to
involve more complicated reproducing kernels, (e.g. of Bessel type);

◮ A formulation in terms of a novel quantum object defined in terms of sum over
time-paths, or sums over surfaces, is under investigation (such objects seem also
to arise, from a different perspective, in loop quantum gravity, e.g. Reisenberger
& Rovelli, 1997).
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