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Cyclic representations of the reflection algebra

Let R PM4pCq be the 6-vertex trigonometric R-matrix. The Yang-Baxter algebra is : R12pλ{µqM1QpλqM2Qpµq “M2QpµqMQ1pλqR12pλ{µq
We consider L0npλ|Pnq, the following general cyclic representation [1] of the Yang Baxter algebra :
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un and vn are the
generators of a local
cyclic Weyl algebra.

dimpHnq “ p

One can describe the sine-Gordon model, the chiral-Potts model or the XXZ spin s chain, with p “ 2s` 1

To describe general integrable boundaries, we have to consider the reflection algebra [2] :

R12pλ{µq U´1Qpλq R12pλµ{qq U´2Qpµq “ U´2Qpµq R12pλµ{qq U´1Qpλq R12pλ{µq

A solution is given by U´0Qpλq “M0QpλqK´0pλqM
´1
0Q p1{λq. The transfer matrix reads T pλ|PQq “ tr0 tK`pλq U´0Qpλqu.

In [3] and [4], we solved the spectral problem associated to this transfer matrix using the Separation of Variables [5]. For general parameters,
the eigenvalues tpλq are a particular type of polynomials, satisfying an inhomogeneous Baxter equation :

tpλqQpλq “ apλqQpλ{qq ` ap1{λqQpqλq ` F pλq

The reflection equations
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21 pP2|P1q K´1pP1q Rφ2

12 pP1|P2q K´2pP2q

“ K´2pP2q Rφ1

21 pP2|P1qK´1pP1q R12pP1|P2q

• R encodes the collision of the particles,
depending on their relative positions at
asymptotic times

• The reflected particle is modified by an
automorphism φ

• The equation holds from asymptotic
conservation of momentum

Reflection algebra associated to the cyclic-cyclic fundamental R-matrix

We are interested in the cyclic-cyclic fundamental R-matrix, which does the intertwinning for
two different quantum spaces a and b :

SbapPb|Paq L0apλ|Paq L0bpλ|Pbq “ L0bpλ|Pbq L0apλ|Paq SbapPb|Paq

Existence of S : Ñ The intertwinner is known for the chiral-Potts case. [1]
OOOOOOOOOOOOOOOOO The parameters have to be on the so-called chiral-Potts curves.
OOOOOO.OOOO ÑWe generalized the existence conditions and the expression of S
The reflection equation for mixed representations :

Lσ0θa
a0 pPa|λq K´0pλq L

θa
0apλ|Paq K´apPaq “ K´apPaq L

σ0
a0pλ|Paq K´0pλq L0apλ|Paq

OOOOOO.OOOOÑWe find an expression for θ. We find a diagonal scalar solution K´apPaq.

Based on [6], we construct the dual equation and we find a diagonal scalar solution K`apPaq.

The dressing of this equation leads to the commutation rT pλ|PQq, T pPa|PQqs “ 0,

with the following cyclic-cyclic fundamental transfer matrix :

T pPa|PQq “ tra

!

K`apPaq S
θQθa
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θQ
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)

SQapPQ|Paq “ SQNapPQN
|Paq...SQ1apPQ1 |Paq and SaQpPa|PQq “ SaQ1pPa|PQ1q...SaQN

pPa|PQN
q

The cyclic-cyclic reflection equation gives the commutation rT pPb|PQq, T pPa|PQqs “ 0.

Sθbθaba pPb|Paq K´apPaq SθbabpPa|Pbq K´bpPbq “ K´bpPbq Sθaba pPb|Paq K´apPaq SabpPa|Pbq

Local Hamiltonians for cyclic models

For cyclic representations, tra tK`apP´a qu “ 0. We thus compute the second order derivative
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The boundary term BN has a non trivial expression involving K`,
dK`

dx
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ˇ

P´
and the first and

second order derivatives of S.
For a quantum space of dimension 3, we explicitely check :

The hamiltonian boundaries are symmetric and tra tK`apP´a qHNau 9 id

Standard local Hamiltonians
The standard procedure introduced by
Sklyanin [2] is to consider the first order
derivative of the transfer matrix. It leads to :
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The local interactions are expressed thanks to
the derivative of S and the permutation oper-
ators :

Hk,m “
dSmkpPm|Pkq

dxm
Pkm`Pkm

dSmkpPm|Pkq

dxm

Perspective

There may hold a symmetry of the
transfer matrix to explain the boundary
symmetry. This would also prove that
tra tK`apP

´
a qHNau reduces to a scalar.

Moreover, we can investigate for non diagonal
scalar solutions to the cyclic fundamental
reflection equations, and for another auto-
morphism θ.
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