Local Hamiltonians associated to cyclic representations of the reflection algebra

Baptiste PEZELIER (baptiste.pezelier@ens-lyon.fr) ;
ENS DE LYON

Giuliano NICCOLI (giuliano.niccoli@ens-lyon.fr) ; Jean-Michel MAILLET (maillet@ens-lyon.fr)

Cyclic representations of the reflection algebra

Let $\mathcal{R} \in \mathcal{M}_{4}(\mathbb{C})$ be the 6-vertex trigonometric R-matrix. The Yang-Baxter algebra is : $\mathcal{R}_{12}(\lambda / \mu) M_{1 Q}(\lambda) M_{2 Q}(\mu)=M_{2 Q}(\mu) M_{Q 1}(\lambda) \mathcal{R}_{12}(\lambda / \mu)$ We consider $L_{0 n}\left(\lambda \mid P_{n}\right)$, the following general cyclic representation [1] of the Yang Baxter algebra:

$$
\left.L_{0 n}\left(\lambda \mid P_{n}\right)=\left(\begin{array}{cc}
\lambda \alpha_{n} \mathfrak{v}_{n}-\beta_{n} / \lambda \mathfrak{v}_{n}^{-1} & \mathfrak{u}_{n}\left(q^{-1 / 2} a_{n} \mathfrak{v}_{n}+q^{1 / 2} b_{n} \mathfrak{v}_{n}^{-1}\right) \\
\mathfrak{u}_{n}^{-1}\left(q^{1 / 2} c_{n} \mathfrak{v}_{n}+q^{-1 / 2} d_{n} \mathfrak{v}_{n}^{-1}\right) & \gamma_{n} / \lambda \mathfrak{v}_{n}-\lambda \delta_{n} \mathfrak{v}_{n}^{-1}
\end{array}\right) \quad\left[\begin{array}{c}
\mathfrak{u}_{n} \mathfrak{v}_{m}=q^{\delta_{n m}} \mathfrak{v}_{m} \mathfrak{u}_{n} \\
\mathfrak{u}_{n}^{p}=\mathfrak{v}_{n}^{p}=\mathbb{1} \\
q^{p}=1
\end{array}\right] \quad \begin{array}{c}
\mathfrak{u}_{n} \text { and } \mathfrak{v}_{n} \text { are the } \\
\text { generators of a local } \\
\text { cyclic Weyl algebra. }
\end{array}\right] \begin{gathered}
\operatorname{dim}\left(\mathcal{H}_{n}\right)=p
\end{gathered}
$$

One can describe the sine-Gordon model, the chiral-Potts model or the $\mathbf{X X Z}$ spin \mathbf{s} chain, with $p=2 s+1$
To describe general integrable boundaries, we have to consider the reflection algebra [2] :

$$
\mathcal{R}_{12}(\lambda / \mu) \mathcal{U}_{-1 Q}(\lambda) \mathcal{R}_{12}(\lambda \mu / q) \mathcal{U}_{-2 Q}(\mu)=\mathcal{U}_{-2 Q}(\mu) \mathcal{R}_{12}(\lambda \mu / q) \mathcal{U}_{-1 Q}(\lambda) \mathcal{R}_{12}(\lambda / \mu)
$$

A solution is given by $\mathcal{U}_{-0 Q}(\lambda)=M_{0 Q}(\lambda) K_{-0}(\lambda) M_{0 Q}^{-1}(1 / \lambda)$. The transfer matrix reads $T\left(\lambda \mid P_{Q}\right)=\operatorname{tr}_{0}\left\{K_{+}(\lambda) \mathcal{U}_{-0 Q}(\lambda)\right\}$.
In [3] and [4], we solved the spectral problem associated to this transfer matrix using the Separation of Variables [5]. For general parameters, the eigenvalues $t(\lambda)$ are a particular type of polynomials, satisfying an inhomogeneous Baxter equation :

$$
t(\lambda) Q(\lambda)=a(\lambda) Q(\lambda / q)+a(1 / \lambda) Q(q \lambda)+F(\lambda)
$$

Reflection algebra associated to the cyclic-cyclic fundamental R-matrix
We are interested in the cyclic-cyclic fundamental R-matrix, which does the intertwinning for two different quantum spaces a and b

$$
\mathcal{S}_{b a}\left(P_{b} \mid P_{a}\right) L_{0 a}\left(\lambda \mid P_{a}\right) L_{0 b}\left(\lambda \mid P_{b}\right)=L_{0 b}\left(\lambda \mid P_{b}\right) L_{0 a}\left(\lambda \mid P_{a}\right) \mathcal{S}_{b a}\left(P_{b} \mid P_{a}\right)
$$

Existence of $\mathcal{S}: \rightarrow$ The intertwinner is known for the chiral-Potts case. [1]
The parameters have to be on the so-called chiral-Potts curves.
\rightarrow We generalized the existence conditions and the expression of \mathcal{S} The reflection equation for mixed representations :

$$
L_{a 0}^{\sigma_{0} \theta_{a}}\left(P_{a} \mid \lambda\right) K_{-0}(\lambda) L_{0 a}^{\theta_{a}}\left(\lambda \mid P_{a}\right) K_{-a}\left(P_{a}\right)=K_{-a}\left(P_{a}\right) L_{a 0}^{\sigma_{0}}\left(\lambda \mid P_{a}\right) K_{-0}(\lambda) L_{0 a}\left(\lambda \mid P_{a}\right)
$$

\rightarrow We find an expression for θ. We find a diagonal scalar solution $K_{-a}\left(P_{a}\right)$. Based on [6], we construct the dual equation and we find a diagonal scalar solution $K_{+a}\left(P_{a}\right)$

The dressing of this equation leads to the commutation $\left[T\left(\lambda \mid P_{Q}\right), \mathcal{T}\left(P_{a} \mid P_{Q}\right)\right]=0$, with the following cyclic-cyclic fundamental transfer matrix :

$$
\mathcal{T}\left(P_{a} \mid P_{Q}\right)=\operatorname{tr}_{a}\left\{K_{+a}\left(P_{a}\right) S_{Q a}^{\theta_{Q} \theta_{a}}\left(P_{Q} \mid P_{a}\right) K_{-a}\left(P_{a}\right) S_{a Q}^{\theta_{Q}}\left(P_{a} \mid P_{Q}\right)\right\}
$$

$S_{Q a}\left(P_{Q} \mid P_{a}\right)=S_{Q_{N} a}\left(P_{Q_{N}} \mid P_{a}\right) \ldots S_{Q_{1} a}\left(P_{Q_{1}} \mid P_{a}\right)$ and $S_{a Q}\left(P_{a} \mid P_{Q}\right)=S_{a Q_{1}}\left(P_{a} \mid P_{Q_{1}}\right) \ldots S_{a Q_{N}}\left(P_{a} \mid P_{Q_{N}}\right)$ The cyclic-cyclic reflection equation gives the commutation $\left[\mathcal{T}\left(P_{b} \mid P_{Q}\right), \mathcal{T}\left(P_{a} \mid P_{Q}\right)\right]=0$.

$$
\mathcal{S}_{b a}^{\theta_{b} \theta_{a}}\left(P_{b} \mid P_{a}\right) K_{-a}\left(P_{a}\right) \mathcal{S}_{a b}^{\theta_{b}}\left(P_{a} \mid P_{b}\right) K_{-b}\left(P_{b}\right)=K_{-b}\left(P_{b}\right) \mathcal{S}_{b a}^{\theta_{a}}\left(P_{b} \mid P_{a}\right) K_{-a}\left(P_{a}\right) \mathcal{S}_{a b}\left(P_{a} \mid P_{b}\right)
$$

Local Hamiltonians for cyclic models

For cyclic representations, $\operatorname{tr}_{a}\left\{K_{+a}\left(P_{a}^{-}\right)\right\}=0$. We thus compute the second order derivative

$$
\left.\frac{d^{2} \mathcal{T}\left(P_{a} \mid P_{Q}\right)}{d x_{a}^{2}}\right|_{P_{a}^{-}}=\alpha \sum_{k=1}^{N-1} H_{k, k+1}+\left.\alpha \frac{d K_{-1}\left(P_{1}\right)}{d x_{1}}\right|_{P_{1}^{-}}+B_{N}+c s t
$$

The boundary term B_{N} has a non trivial expression involving $K_{+},\left.\frac{d K_{+}}{d x}\right|_{P^{-}}$and the first and second order derivatives of S .
For a quantum space of dimension 3, we explicitely check :
The hamiltonian boundaries are symmetric and $\operatorname{tr}_{a}\left\{K_{+a}\left(P_{a}^{-}\right) H_{N a}\right\} \propto i d$

References

[1] V. BAZHANOV, Y. STROGANOV, J. Stat. Phys 59 (1990)
[2] E. SKLYANIN, J. Phys. A : Math. Gen. 21 (1988)
[3] J-M MAILLET, G. NICCOLI, B. PEZELIER SciPost Phys. 2, 009 (2017)
[4] J-M maillet, G. Niccoli, B. PEZELIER to appear
[5] SKLYANIN, World Scientific 63 (1992)
[6] L. FREIDEL, J-M MAILLET, Phys. Lett. B, 262 278-284 (1991)

Perspective

There may hold a symmetry of the transfer matrix to explain the boundary symmetry. This would also prove that $\operatorname{tr}_{a}\left\{K_{+a}\left(P_{a}^{-}\right) H_{N a}\right\}$ reduces to a scalar. Moreover, we can investigate for non diagonal scalar solutions to the cyclic fundamental reflection equations, and for another automorphism θ.

The reflection equations

$\mathbb{R}_{21}^{\phi_{2} \phi_{1}}\left(P_{2} \mid P_{1}\right) K_{-1}\left(P_{1}\right) \mathbb{R}_{12}^{\phi_{2}}\left(P_{1} \mid P_{2}\right) K_{-2}\left(P_{2}\right)$
$=K_{-2}\left(P_{2}\right) \mathbb{R}_{21}^{\phi_{1}}\left(P_{2} \mid P_{1}\right) K_{-1}\left(P_{1}\right) \mathbb{R}_{12}\left(P_{1} \mid P_{2}\right)$

- \mathbb{R} encodes the collision of the particles, depending on their relative positions at asymptotic times
- The reflected particle is modified by an automorphism ϕ
- The equation holds from asymptotic conservation of momentum

Standard local Hamiltonians

The standard procedure introduced by Sklyanin [2] is to consider the first order derivative of the transfer matrix. It leads to

$$
\begin{aligned}
\left.\frac{d \mathcal{T}\left(P_{a} \mid P_{Q}\right)}{d x_{a}}\right|_{P_{a}^{-}} & =\left.\operatorname{tr}_{a}\left\{K_{+a}\left(P_{a}^{-}\right)\right\} \frac{d K_{-1}\left(P_{1}\right)}{d x_{1}}\right|_{P_{1}^{-}} \\
+ & \operatorname{tr}_{a}\left\{K_{+a}\left(P_{a}^{-}\right)\right\} \sum_{k=1}^{N-1} H_{k, k+1} \\
& +\operatorname{tr}_{a}\left\{K_{+a}\left(P_{a}^{-}\right) H_{N a}\right\}+c s t
\end{aligned}
$$

The local interactions are expressed thanks to the derivative of S and the permutation operators:
$H_{k, m}=\frac{d S_{m k}\left(P_{m} \mid P_{k}\right)}{d x_{m}} \mathcal{P}_{k m}+\mathcal{P}_{k m} \frac{d S_{m k}\left(P_{m} \mid P_{k}\right)}{d x_{m}}$

