Bethe vectors, scalar products and form factors for integrable models with higher rank algebras

Generalized
integrable models
Notations
Bethe vectors
LAPTh (CNRS), Annecy, France

JMM's 60s
 Lyon, October 2017

with S. Belliard (CEA, Saclay), S. Pakuliak (JINR, Dubna), N. Slavnov (Steklov Math. Inst., Moscow) and more recently A. Hutsalyuk (Wuppertal/Moscow) and A. Liashyk (Kiev/Moscow)

General goal

Compute the correlation functions $<\mathcal{O}_{1} \cdots \mathcal{O}_{n}>=\operatorname{tr}\left(\mathcal{O}_{1} \cdots \mathcal{O}_{n}\right)$ for some local operators $\mathcal{O}_{1}, \cdots, \mathcal{O}_{n}$

If one has a basis of the space of states $\mathcal{H},\{\mid \psi>\}$, then it is enough to compute $<\psi\left|\mathcal{O}_{1} \cdots \mathcal{O}_{n}\right| \psi>$ (and then sum on ψ 's)

Since we have a basis $\mathcal{O} \mid \psi>$ can be expressed as a linear combination of ψ 's. Thus, to get the correlation function, we need "only":

1. The basis $|\psi\rangle$
2. The decomposition $\mathcal{O}\left|\psi>=\sum_{\psi^{\prime}} \mathcal{O}_{\psi \psi^{\prime}}\right| \psi^{\prime}>$
3. The scalar product $\left\langle\psi \mid \psi^{\prime}\right\rangle$
4. The form factor $\left\langle\psi^{\prime}\right| \mathcal{O}|\psi\rangle$

Generalized
integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula
Universal FF
Summary
Conclusion

We want to compute the scalar product and the form factors for integrable models associated to algebras with rank >2

Plan of the talk

- Framework: generalized models
- Bethe vectors (BVs)
- Scalar products of BVs
- Reshetikhin formula
- Determinant form
- Gaudin determinant
- Form Factors (FF)
- Twisted scalar product tricks
- Zero mode method
- Coproduct formula
- Summary
- Conclusion

Generalized
integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula
Universal FF
Summary
Conclusion

Calculations are rather technical \Rightarrow ideas \& results only!

General background: generalized quantum integrable models

R-matrix

$R\left(z_{1}, z_{2}\right) \in V \otimes V$ with $V=\operatorname{End}\left(\mathbb{C}^{\mathfrak{n}}\right)$ and $z_{1}, z_{2} \in \mathbb{C}$ spectral
parameters
$R\left(z_{1}, z_{2}\right)$ obeys Yang-Baxter equation in $V \otimes V \otimes V$

$$
R^{12}\left(z_{1}, z_{2}\right) R^{13}\left(z_{1}, z_{3}\right) R^{23}\left(z_{2}, z_{3}\right)=R^{23}\left(z_{2}, z_{3}\right) R^{13}\left(z_{1}, z_{3}\right) R^{12}\left(z_{1}, z_{2}\right)
$$

$R^{12}=R \otimes \mathbb{I}_{\mathfrak{n}} \in V \otimes V \otimes V, R^{23}=\mathbb{I}_{\mathfrak{n}} \otimes R \in V \otimes V \otimes V, .$.

Universal monodromy matrix $T(x) \in V \otimes \mathcal{A}$

Defines the algebra $\mathcal{A}=Y\left(g I_{\mathfrak{m}}\right), U_{q}\left(\left.\widehat{g}\right|_{\mathfrak{m}}\right), Y\left(g I_{\mathfrak{m} \mid \mathfrak{p}}\right), \ldots$

$$
\begin{aligned}
& R^{12}\left(z_{1}, z_{2}\right) T^{1}\left(z_{1}\right) T^{2}\left(z_{2}\right)=T^{2}\left(z_{2}\right) T^{1}\left(z_{1}\right) R^{12}\left(z_{1}, z_{2}\right) \\
& T(z)=\sum_{i, j=1}^{n} e_{i j} \otimes T_{i j}(z) \in V \otimes \mathcal{A}\left[\left[z^{-1}\right]\right]
\end{aligned}
$$

Generalized

integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form.
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula
Universal FF
Summary
Conclusion
$T^{1}\left(z_{1}\right)=T\left(z_{1}\right) \otimes \mathbb{I}_{\mathfrak{n}} \in V \otimes V \otimes \mathcal{A} ; T^{2}\left(z_{2}\right)=\mathbb{I}_{\mathfrak{n}} \otimes T\left(z_{2}\right) \in V \otimes V \otimes \mathcal{A}$ $\mathfrak{n}=\operatorname{rank} \mathcal{A}$ (i.e. $\mathfrak{n}=\mathfrak{m}, \mathfrak{m}+\mathfrak{p}, \ldots$)

Generalized quantum integrable models

Transfer matrix $\mathfrak{t}(z)$

For algebras

$$
\mathfrak{t}(z)=\operatorname{Tr} T(z)=T_{11}(z)+\ldots+T_{\mathfrak{n} \mathfrak{n}}(z)
$$

For superalgebras

$$
\begin{aligned}
\mathfrak{t}(z) & =\mathrm{s} \operatorname{Tr} T(z)=\sum_{i=1}^{\mathfrak{n}}(-1)^{[i]} T_{i i}(z) \\
& =T_{11}(z)+\ldots+T_{\mathfrak{m m}}(z)-T_{\mathfrak{m}+1, \mathfrak{m}+1}(z)-\ldots-T_{\mathfrak{p}+\mathfrak{m}, \mathfrak{p}+\mathfrak{m}}(z)
\end{aligned}
$$

Due to YBE $\left[\mathfrak{t}(z), \mathfrak{t}\left(z^{\prime}\right)\right]=0$, the transfer matrix defines an integrable model (with periodic boundary conditions).

Generalized integrable models

Notations
Bethe vectors
Scalar products
-Reshetikhin form.
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula
Universal FF
Summary

In general, the Hamiltonian is chosen as $H=-\left.\frac{d}{d z} \ln \mathfrak{t}(z)\right|_{z=z_{0}}$.

Choice of a (lowest weight) representation \mathcal{A} :

$$
T_{j j}(z)|0\rangle=\lambda_{j}(z)|0\rangle, j=1, . ., \mathfrak{n} \quad T_{i j}(z)|0\rangle=0, \quad 1 \leq j<i \leq \mathfrak{n}
$$

Up to normalisation of $T(z)$, we only need the ratios

$$
r_{i}(z)=\frac{\lambda_{i}(z)}{\lambda_{i+1}(z)}, \quad i=1, \ldots, \mathfrak{n}-1
$$

we keep $r_{i}(z)$ as free functional parameters.

The calculation is valid for any representation (provided it is lowest/highest weight): these are the generalized models

Eric Ragoucy

Generalized

integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct formula

Universal FF
Summary
Conclusion

Example: the "fundamental" spin chain

For $\mathcal{A}=Y\left(g /_{\mathfrak{m}}\right), U_{q}\left(\widehat{g} I_{\mathfrak{m}}\right), Y\left(g I_{\mathfrak{m} \mid \mathfrak{p}}\right), \ldots$, we consider the following monodromy matrix:

$$
\begin{aligned}
T^{0}(z \mid \bar{z}) & =R^{01}\left(z-z_{1}\right) R^{02}\left(z-z_{2}\right) \cdots R^{0 L}\left(z-z_{L}\right) \\
\lambda_{1}(z) & =\prod_{\ell=1}^{L}\left(1-\frac{1}{z-z_{\ell}}\right) \\
\lambda_{j}(z) & =1 \quad j=2, \ldots, \mathfrak{n}
\end{aligned}
$$

It corresponds to a periodic spin chain with L sites, each of them carrying a fundamental representation of \mathcal{A}.

- $1,2, \ldots, L$ are the quantum (physical) spaces of the spin chain. Here they are \mathfrak{n}-dimensional: on each site the "spins" can take \mathfrak{n} values.

Generalized
integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula
Universal FF
Summary
Conclusion

- $\bar{z}=\left\{z_{1}, \ldots, z_{L}\right\}$ are the inhomogneities.
- 0 is the auxiliary space.

To illustrate the talk, we will focus on $Y\left(g l_{\mathrm{n}}\right)$ (rational R-matrix) and possibly take $\mathfrak{n}=3$:

$$
\begin{aligned}
R\left(z_{1}, z_{2}\right) & =\mathbf{I}+g\left(z_{1}, z_{2}\right) \mathbf{P} \in \operatorname{End}\left(\mathbb{C}^{3}\right) \otimes \operatorname{End}\left(\mathbb{C}^{3}\right) \\
g\left(z_{1}, z_{2}\right) & =\frac{c}{z_{1}-z_{2}}
\end{aligned}
$$

\mathbf{I} is the identity matrix, \mathbf{P} is the permutation matrix between two spaces $\operatorname{End}\left(\mathbb{C}^{3}\right), c$ is a constant.
It corresponds to XXX-like models and is based on $Y(\mathrm{~g} / 3)$.

$$
R\left(z_{1}, z_{2}\right)=\left(\begin{array}{ccc|ccc|ccc}
f & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & g & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & g & 0 & 0 \\
\hline 0 & g & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & f & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & g & 0 \\
\hline 0 & 0 & g & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & g & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & f
\end{array}\right)
$$

Generalized
 integrable models

Notations
Bethe vectors
Scalar products
-Reshetikhin form.
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula
Universal FF
Summary
Conclusion
$Y\left(g l_{3}\right): g \equiv g\left(z_{1}, z_{2}\right)$ and $f \equiv f\left(z_{1}, z_{2}\right)=1+g\left(z_{1}, z_{2}\right)$

Notations

We have already introduced

- The functions

Bethe vectors, scalar products and form factors for integrable models with higher rank algebras

Eric Ragoucy

$$
g\left(z_{1}, z_{2}\right)=\frac{c}{z_{1}-z_{2}} \quad \text { and } \quad f\left(z_{1}, z_{2}\right)=\frac{z_{1}-z_{2}+c}{z_{1}-z_{2}}
$$

that enter in the definition of the R-matrix \Rightarrow The interaction in the bulk (XXX or XXZ type).

- The free functionals

$$
r_{i}(z)=\frac{\lambda_{i}(z)}{\lambda_{i+1}(z)}, \quad i=1, \ldots, \mathfrak{n}-1
$$

that (potentially) describe the representation \Rightarrow The type of spin chain (spins and length of the chain).

We also use

$$
h\left(z_{1}, z_{2}\right)=\frac{f\left(z_{1}, z_{2}\right)}{g\left(z_{1}, z_{2}\right)}, \quad t\left(z_{1}, z_{2}\right)=\frac{g\left(z_{1}, z_{2}\right)}{h\left(z_{1}, z_{2}\right)} .
$$

Notations

Bethe vectors, scalar products and form factors for integrable models with higher rank algebras

Eric Ragoucy

Many sets of variables (*) ... don't be scared)

- "bar" always denote sets of variables: $\bar{w}, \bar{u}, \bar{v}$ etc..
- Individual elements of the sets have latin subscripts: w_{j}, u_{k}, etc..
- \# is the cardinality of a set: $\bar{w}=\left\{w_{1}, w_{2}\right\} \Rightarrow \# \bar{w}=2$, etc...
- Subsets of variables are denoted by roman indices: $\bar{u}_{\mathrm{I}}, \bar{v}_{\mathrm{iv}}, \bar{w}_{\mathrm{II}}$, etc.
- Special case: $\bar{u}_{j}=\bar{u} \backslash\left\{u_{j}\right\}, \bar{w}_{k}=\bar{w} \backslash\left\{w_{k}\right\}$, etc...

Generalized
integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form.
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula
Universal FF
Summary
Conclusion

Notations

Many sets of variables ©

- "bar" always denote sets of variables: $\bar{w}, \bar{u}, \bar{v}$ etc..
- Individual elements of the sets have latin subscripts: w_{j}, u_{k}, etc..

Eric Ragoucy

- $\#$ is the cardinality of a set: $\bar{w}=\left\{w_{1}, w_{2}\right\} \Rightarrow \# \bar{w}=2$, etc...
- Subsets of variables are denoted by roman indices: $\bar{u}_{\mathrm{I}}, \bar{v}_{\mathrm{iv}}, \bar{w}_{\mathrm{II}}$, etc.
- Special case: $\bar{u}_{j}=\bar{u} \backslash\left\{u_{j}\right\}, \bar{w}_{k}=\bar{w} \backslash\left\{w_{k}\right\}$, etc...

Shorthand notations for products of scalar functions
(when they depend on one or two variables):

$$
\begin{aligned}
& f\left(\bar{u}_{\text {II }}, \bar{u}_{\text {I }}\right)=\prod_{u_{j} \in \bar{u}_{\mathrm{I}}} \prod_{u_{k} \in \bar{u}_{\mathrm{I}}} f\left(u_{j}, u_{k}\right), \\
& r_{1}\left(\bar{u}_{\text {II }}\right)=\prod_{u_{j} \in \bar{u}_{\mathrm{II}}} r_{1}\left(u_{j}\right) ; \quad g\left(v_{k}, \bar{w}\right)=\prod_{w_{j} \in \bar{w}} g\left(v_{k}, w_{j}\right), \quad \text { etc.. }
\end{aligned}
$$

Generalized
integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form.
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula
Universal FF
Summary
Conclusion

Bethe vectors (BVs)

Framework: Algebraic-Nested Bethe Ansatz (Leningrad school 80's) [Faddeev, Kulish, Reshetikhin, Sklyanin, Takhtajan, ...]

For "usual" $\mathrm{XXX}\left(\mathrm{g} \mathrm{g}_{2}\right)$ spin chain

Only one 'raising' operator $T_{12}(z)$ and one set of Bethe parameters \bar{u} :
Generalized
integrable models
Notations
Bethe vectors

$$
\mathbb{B}^{a}(\bar{u})=T_{12}\left(u_{1}\right) T_{12}\left(u_{2}\right) \cdots T_{12}\left(u_{a}\right)|0\rangle
$$

For higher rank \mathfrak{n} :

There are many raising operators $T_{i, i+1}(z), i=1,2, \ldots, \mathfrak{n}-1$.
There are $\mathfrak{n}-1$ sets of Bethe parameters:

$$
\begin{aligned}
& \bar{t}^{(j)}=\left\{t_{1}^{(j)}, \ldots, t_{a_{j}}^{(j)}\right\}, \quad \# \bar{t}^{(j)}=a_{j} \in \mathbb{Z}_{+}, \quad j=1,2, \ldots, \mathfrak{n}-1 \\
& \bar{t}=\left\{\bar{t}^{(1)}, \bar{t}^{(2)}, \ldots ., \bar{t}^{(\mathfrak{n}-1)}\right\}, \quad \bar{a}=\left\{a_{1}, a_{2}, \ldots, a_{\mathfrak{n}-1}\right\}
\end{aligned}
$$

$\mathbb{B}^{\bar{a}}(\bar{t})$ appears to be much more complicated...

On-shell Bethe vectors and Bethe equations

$\mathbb{B}^{\bar{a}}(\bar{t})$ is a transfer matrix eigenvector

$$
\mathfrak{t}(z) \mathbb{B}^{\bar{a}}(\bar{t})=\tau(z \mid \bar{t}) \mathbb{B}^{\bar{a}}(\bar{t})
$$

provided the Bethe equations (BAEs) are obeyed:
Generalized
integrable models
Notations

$$
\begin{aligned}
& r_{i}\left(\bar{t}_{\mathrm{I}}^{(i)}\right)=\frac{f\left(\bar{t}_{\mathrm{I}}^{(i)}, \bar{t}_{\mathrm{I}}^{(i)}\right)}{f\left(\bar{t}_{\mathrm{II}}^{(i)}, \bar{t}_{\mathrm{I}}^{(i)}\right)} \frac{f\left(\bar{t}^{(i+1)}, \bar{t}_{\mathrm{I}}^{(i)}\right)}{f\left(\bar{t}_{\mathrm{I}}^{(i)}, \bar{t}^{(i-1)}\right)}, \quad i=1, \ldots, \mathfrak{n}-1 \\
& \text { with } \bar{t}^{(0)}=\emptyset=\bar{t}^{(\mathfrak{n})}
\end{aligned}
$$

that hold for arbitrary partitions of the sets $\bar{t}^{(j)}$ into subsets $\left\{\bar{t}_{\mathrm{I}}^{(j)}, \bar{t}_{\mathrm{II}}^{(j)}\right\}$.
In that case, $\mathbb{B}^{\bar{a}}(\bar{t})$ will be called an on-shell BV

Generalized models

The Bethe equations are not seen as a 'quantization' of the Bethe parameters \bar{t} anymore But rather as functional relations on the functions $r_{i}(x), i=1, \ldots, \mathfrak{n}-1$.

Bethe vectors
Scalar products
-Reshetikhin form
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula
Universal FF

Summary

Conclusion

Presentation for $Y\left(g g_{3}\right): \bar{t}^{(1)} \equiv \bar{u}$ and $\bar{t}^{(2)} \equiv \bar{v}$

Known formulas: Trace formula ['07 Tarasov \& Varchenko]

Bethe vectors, scalar products and form factors for integrable models with higher rank algebras

Eric Ragoucy

$$
\mathbb{B}^{a, b}(\bar{u} ; \bar{v})=\underbrace{\operatorname{tr}(\overbrace{\mathbb{T}(\bar{u} ; \bar{v}) \mathbb{R}(\bar{u} ; \bar{v})}^{\in Y(g / 3) \otimes V \otimes(a+b)} e_{21}^{\otimes a} \otimes e_{32}^{\otimes b})}_{\in Y(g / \mathbf{3})}|0\rangle
$$

$$
\# \bar{u}=a, \quad \# \bar{v}=b, \quad e_{i j}=3 \times 3 \text { elementary matrices }
$$

The trace is taken over $a+b$ auxiliary spaces, i.e. in $\operatorname{End}\left(\mathbb{C}^{3}\right)^{\otimes(a+b)}$

$$
\begin{aligned}
\mathbb{T}(\bar{u}, \bar{v})= & T^{1}\left(u_{1}\right) \cdots T^{a}\left(u_{a}\right) T^{a+1}\left(v_{1}\right) \cdots T^{a+b}\left(v_{b}\right) \\
\mathbb{R}(\bar{u}, \bar{v})= & \left(R^{a, a+1}\left(u_{a}, v_{1}\right) \cdots R^{a, a+b}\left(u_{a}, v_{b}\right)\right) \cdots \times \\
& \times \cdots\left(R^{1, a+1}\left(u_{1}, v_{1}\right) \cdots R^{1, a+b}\left(u_{1}, v_{b}\right)\right)
\end{aligned}
$$

Generalized
integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula
Universal FF
Summary
Conclusion

- Valid for $Y\left(g /_{\mathrm{m}}\right)$ and $U_{q}\left(\widehat{g}_{\mathrm{m}}\right)$.
- Exists also for superalgebras $Y\left(\left.g\right|_{\mathfrak{m} \mid \mathfrak{p}}\right)$ and $U_{q}\left(\widehat{g}_{\mathrm{m} \mid \mathfrak{p}}\right)$

Recursion formulas

$$
\begin{aligned}
& \lambda_{2}\left(u_{k}\right) f\left(\bar{v}, u_{k}\right) \mathbb{B}^{a+1, b}(\bar{u} ; \bar{v})=T_{12}\left(u_{k}\right) \mathbb{B}^{a, b}\left(\bar{u}_{k} ; \bar{v}\right)+ \\
& \quad+\sum_{i=1}^{b} g\left(v_{i}, u_{k}\right) f\left(\bar{v}_{i}, v_{i}\right) T_{13}\left(u_{k}\right) \mathbb{B}^{a, b-1}\left(\bar{u}_{k} ; \bar{v}_{i}\right), \\
& \lambda_{2}\left(v_{k}\right) f\left(v_{k}, \bar{u}\right) \mathbb{B}^{a, b+1}(\bar{u} ; \bar{v})=T_{23}\left(v_{k}\right) \mathbb{B}^{a, b}\left(\bar{u} ; \bar{v}_{k}\right)+ \\
& \quad+\sum_{j=1}^{a} g\left(v_{k}, u_{j}\right) f\left(u_{j}, \bar{u}_{j}\right) T_{13}\left(v_{k}\right) \mathbb{B}^{a-1, b}\left(\bar{u}_{j} ; \bar{v}_{k}\right) .
\end{aligned}
$$

Bethe vectors, scalar products and form factors for integrable models with higher rank algebras

Eric Ragoucy

Generalized
integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form.
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula
Universal FF
Summary
Conclusion

- Valid for $Y\left(g g_{3}\right)$ and $U_{q}\left(\widehat{g} I_{3}\right)$.
- Exists also for $Y\left(g I_{\mathrm{m} \mid \mathfrak{p}}\right)$ and $U_{q}\left(\left.\widehat{g}\right|_{\mathrm{n}}\right)$.

Explicit formulas

$$
\mathbb{B}^{a, b}(\bar{u} ; \bar{v})=\sum \frac{\mathrm{K}_{k}\left(\bar{v}_{\mathrm{I}} \mid \bar{u}_{\mathrm{I}}\right)}{\lambda_{2}\left(\bar{v}_{\text {II }}\right) \lambda_{2}(\bar{u})} \frac{f\left(\bar{v}_{\mathrm{II}}, \bar{v}_{\mathrm{I}}\right) f\left(\bar{u}_{\mathrm{II}}, \bar{u}_{\mathrm{I}}\right)}{f\left(\bar{v}_{\mathrm{II}}, \bar{u}\right) f\left(\bar{v}_{\mathrm{I}}, \bar{u}_{\mathrm{I}}\right)} T_{12}\left(\bar{u}_{\mathrm{II}}\right) T_{13}\left(\bar{u}_{\mathrm{I}}\right) T_{23}\left(\bar{v}_{\text {II }}\right)|0\rangle
$$

Bethe vectors, scalar products and form factors for integrable models with higher rank algebras
(Plus other formulas with different order of T_{12}, T_{13}, T_{23})

The sums are taken over partitions of the sets:
$\bar{u} \Rightarrow\left\{\bar{u}_{\mathrm{I}}, \bar{u}_{\mathrm{I}}\right\}$ and $\bar{v} \Rightarrow\left\{\bar{v}_{\mathrm{I}}, \bar{v}_{\mathrm{I}}\right\}$ with $0 \leq \# \bar{u}_{\mathrm{I}}=\# \bar{v}_{\mathrm{I}}=k \leq \min (a, b)$.
$\mathrm{K}_{k}\left(\bar{v}_{\mathrm{I}} \mid \bar{u}_{\mathrm{I}}\right)$ is the Izergin-Korepin determinant

$$
\begin{aligned}
\mathrm{K}_{k}(\bar{x} \mid \bar{y}) & =\Delta_{k}(\bar{x}) \Delta_{k}^{\prime}(\bar{y}) h(\bar{x}, \bar{y}) \operatorname{det}_{k}\left[t\left(x_{i}, y_{j}\right)\right] \\
\Delta_{k}(\bar{x}) & =\prod_{\ell<m}^{k} g\left(x_{\ell}, x_{m}\right) ; \quad \Delta_{k}^{\prime}(\bar{y})=\prod_{\ell<m}^{k} g\left(y_{m}, y_{\ell}\right)
\end{aligned}
$$

Generalized
integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form.
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula
Universal FF
Summary
Conclusion

- Valid for $Y\left(g l_{3}\right)$ and $U_{q}\left(\widehat{g} I_{3}\right)$.
- Exists also for $Y\left(\left.g\right|_{m \mid p}\right)$ and $U_{q}\left(\widehat{g}_{n}\right)$.

Current presentation and projection method

We use of projectors method in the current realization of $D Y\left(g l_{3}\right)$, [Khoroshkin, Pakuliak and collaborators 2006-10]
N.B. The current realization is related to a Gauss decomposition of the monodromy matrix $T(z)$

Generalized
integrable models
Notations
Explicit expression of BVs in a different basis
$\mathbb{B}(\bar{u}, \bar{v})=\mathcal{P}_{f}^{+}\left(F_{1}\left(u_{1}\right) \cdots F_{1}\left(u_{a}\right) F_{2}\left(v_{1}\right) \cdots F_{2}\left(v_{b}\right)\right) K_{1}(\bar{u}) K_{2}(\bar{v})|0\rangle$

- $K_{1}(z)$ and $K_{2}(z)$ are the Cartan generators
- $F_{1}(z)$ generator associated to the first simple (negative) root
- $F_{2}(z)$ generator associated to the second simple (negative) root
- \mathcal{P}_{f}^{+}projector of the Borel subalgebra on the positive modes

Useful to get explicit expressions and recursion relations

- Valid for $Y\left(g g_{\mathfrak{m} \mid \mathfrak{p}}\right)$ and $U_{q}\left(\widehat{g}_{\mathrm{m}}\right)$.

All these formulas are related

- Explicit expressions obey the recursion formulas
- Trace formula obeys the recursion formulas
- Recursion formulas uniquely fix the $B V s$, once $\mathbb{B}^{a, 0}(\bar{u},$.$) or \mathbb{B}^{0, b}(., \bar{v})$ are known.
- The projection of currents coincides with the trace formula

Generalized
integrable models
Notations
Bethe vectors

Bethe vectors $\mathbb{B}(\bar{t})$

- On-shell BVs: the BAEs are obeyed so that

$$
\mathfrak{t}(z) \mathbb{B}(\bar{t})=\tau(z \mid \bar{t}) \mathbb{B}(\bar{t})
$$

- Off-shell BVs otherwise

Scalar products
-Reshetikhin form.
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula

Dual Bethe vectors $\mathbb{C}(\bar{t})$

- On-shell dual BVs: the (same) BAEs are obeyed so that

$$
\mathbb{C}(\bar{t}) \mathfrak{t}(z)=\tau(z \mid \bar{t}) \mathbb{C}(\bar{t})
$$

- Off-shell dual BVs otherwise

Scalar products of BVs: Reshetikhin formula

$$
\begin{gathered}
S(\bar{s} \mid \bar{t})=\mathbb{C}^{\bar{b}}(\bar{s}) \mathbb{B}^{\bar{a}}(\bar{t}) \\
\bar{s}=\left\{\bar{s}^{(1)}, \bar{s}^{(2)}, \ldots \bar{s}^{(\mathfrak{n}-1)}\right\}, \quad \# \bar{s}^{(j)}=b_{j}, \quad \bar{b}=\left\{b_{1}, b_{2}, \ldots, b_{\mathfrak{n}-1}\right\} \\
\bar{t}=\left\{\bar{t}^{(1)}, \bar{t}^{(2)}, \ldots . \bar{t}^{(\mathfrak{n}-1)}\right\}, \quad \# \bar{t}^{(j)}=a_{j}, \quad \bar{a}=\left\{a_{1}, a_{2}, \ldots, a_{\mathfrak{n}-1}\right\}
\end{gathered}
$$

General formula given by Reshetikhin formula

$$
S(\bar{s} \mid \bar{t})=\sum W_{\mathrm{part}}\left(\overline{\mathrm{I}}_{\mathrm{I}}, \bar{s}_{\text {II }} \mid \bar{t}_{\mathrm{I}}, \bar{t}_{\mathrm{I}}\right) \prod_{j=1}^{\mathrm{n}-1} r_{j}\left(\overline{(}_{\mathrm{I}}^{(j)}\right) r_{j}\left(\bar{t}_{\text {II }}^{(j)}\right) .
$$

The sum is taken over all possible partitions such that $\# \bar{t}_{\mathrm{I}}^{(j)}=\# \bar{s}_{\mathrm{I}}^{(j)}$. The expression is valid for all BVs (on-shell or off-shell).
Eric Ragoucy

Generalized
integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form.
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method

- Coproduct
formula
Universal FF
Summary
Conclusion
- Valid for $Y\left(g I_{\mathfrak{m} \mid \mathfrak{p}}\right)$ and $U_{q}\left(\left.\widehat{g}\right|_{\mathrm{m}}\right)$.

But difficult to handle \Rightarrow we look for determinant expressions for $S(\bar{s} \mid \bar{t})$.

Scalar products of BV s: determinant formula

Here we consider the case $\mathfrak{n}=3$ and the scalar product of an on-shell
Bethe vectors, scalar products and form factors for integrable models with higher rank algebras

Eric Ragoucy Bethe vector

$$
\mathfrak{t}(z) \mathbb{B}^{a, b}\left(\bar{u}^{B} ; \bar{v}^{B}\right)=\tau\left(z \mid \bar{u}^{B}, \bar{v}^{B}\right) \mathbb{B}^{a, b}\left(\bar{u}^{B} ; \bar{v}^{B}\right) \quad \text { and BAEs }
$$

with a twisted dual on-shell Bethe vector

$$
\mathbb{C}_{\kappa}^{a, b}\left(\bar{u}^{C} ; \bar{v}^{C}\right) \mathfrak{t}_{\kappa}(z)=\tau_{\kappa}\left(z \mid \bar{u}^{C}, \bar{v}^{C}\right) \mathbb{C}_{\kappa}^{a, b}\left(\bar{u}^{C} ; \bar{v}^{C}\right)
$$

with twisted BAEs

$$
\begin{aligned}
& \mathfrak{t}_{\kappa}(z)=\operatorname{tr}(M T(z)) \quad \text { with } \quad M=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \kappa & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \mathfrak{t}_{\kappa}(z)=T_{11}(z)+\kappa T_{22}(z)+T_{33}(z)
\end{aligned}
$$

$$
\mathcal{S}_{\kappa}^{a, b} \equiv \mathbb{C}_{\kappa}^{a, b}\left(\bar{u}^{C} ; \bar{v}^{C}\right) \mathbb{B}^{a, b}\left(\bar{u}^{B} ; \bar{v}^{B}\right)
$$

$$
\begin{aligned}
& \mathcal{S}_{\kappa}^{a, b}= f\left(\bar{v}^{C}, \bar{u}^{C}\right) f\left(\bar{v}^{B}, \bar{u}^{B}\right) t\left(\bar{v}^{C}, \bar{u}^{B}\right) \Delta_{a}^{\prime}\left(\bar{u}^{C}\right) \Delta_{a}\left(\bar{u}^{B}\right) \Delta_{b}^{\prime}\left(\bar{v}^{C}\right) \Delta_{b}\left(\bar{v}^{B}\right) \\
& \times \operatorname{det}_{a+b} \mathcal{M} \\
& \Delta_{n}^{\prime}(\bar{w})=\prod_{j>k}^{n} g\left(w_{j}, w_{k}\right), \quad \Delta_{n}(\bar{w})=\prod_{j<k}^{n} g\left(w_{j}, w_{k}\right)
\end{aligned}
$$

Bethe vectors, scalar products and form factors for integrable models with higher rank algebras

Eric Ragoucy

Generalized
integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form
-Det. formula
-Gaudin det.

$$
\begin{aligned}
\mathcal{M}_{j, k} & =\frac{c}{g\left(\xi_{k}, \bar{u}^{C}\right) g\left(\bar{v}^{C}, \xi_{k}\right)} \frac{\partial \tau_{\kappa}\left(\xi_{k} \mid \bar{u}^{C}, \bar{v}^{C}\right)}{\partial u_{j}^{C}}, \quad j=1, \ldots, a, \\
\mathcal{M}_{a+j, k} & =\frac{-c}{g\left(\xi_{k}, \bar{u}^{B}\right) g\left(\bar{v}^{B}, \xi_{k}\right)} \frac{\partial \tau\left(\xi_{k} \mid \bar{u}^{B}, \bar{v}^{B}\right)}{\partial v_{j}^{B}}, \quad j=1, \ldots, b .
\end{aligned}
$$

Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula
Universal FF
Summary

- Valid for a twist $\left\{\kappa_{1}, \kappa_{2}, \kappa_{3}\right\}$ up to corrections in $\left(\kappa_{i}-1\right)\left(\kappa_{j}-1\right)$.
- Exists for $U_{q}\left(\widehat{g}_{3}\right)$ for the twist $\{1, \kappa, 1\}$.
- Exists for $Y\left(g g_{2 \mid 1}\right)$ and $Y\left(g g_{1 \mid 2}\right)$.

Norm of on-shell BVs: Gaudin determinant

We present the example $Y(g / n)$

Rewriting of the BAEs

$$
\Phi_{k}^{(i)}=r_{i}\left(t_{k}^{(i)}\right) \frac{f\left(\bar{t}_{k}^{(i)}, t_{k}^{(i)}\right)}{f\left(t_{k}^{(i)}, \bar{t}_{k}^{(i)}\right)} \frac{f\left(t_{k}^{(i)}, \bar{t}^{(i-1)}\right)}{f\left(\bar{t}^{(i+1)}, t_{k}^{(i)}\right)}, \quad \begin{array}{ll}
& k=1, \ldots, a_{i} \\
i=1, \ldots, \mathfrak{n}-1
\end{array}
$$

BAEs : $\Phi_{k}^{(i)}=1$

The Gaudin matrix

The Gaudin matrix G is a block matrix $\left(G^{(i, j)}\right)_{i, j=1, \ldots, \mathfrak{n}-1}$
Each block $G^{(i, j)}$, of size $a_{i} \times a_{j}$, has entries

$$
G_{k, l}^{(i, j)}=-c \frac{\partial \ln \left(\Phi_{k}^{(i)}\right)}{\partial t_{l}^{(j)}}
$$

Generalized
integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form.
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula
Universal FF
Summary
Conclusion

Bethe vectors, scalar products and form factors for integrable models with higher rank algebras

Eric Ragoucy

Norm of $\mathbb{B}(\bar{t}): S(\bar{t})=\mathbb{C}(\bar{t}) \mathbb{B}(\bar{t})$

For an on-shell $\mathbb{B}(\bar{t})$

$$
S(\bar{t})=\prod_{i=1}^{\mathfrak{n}} \prod_{k=1}^{a_{i}}\left(\frac{f\left(\bar{t}_{k}^{(i)}, t_{k}^{(i)}\right)}{f\left(\bar{t}^{(i+1)}, t_{k}^{(i)}\right)}\right) \operatorname{det} G
$$

N.B. \mathbb{B} and \mathbb{C} have to be on-shell. In that case $\mathbb{C}(\bar{s}) \mathbb{B}(\bar{t})=\delta_{\bar{s}, \bar{t}} S(\bar{t})$

Generalized

integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form.
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
Zero mode
method
-Coproduct formula

Universal FF
Summary
Conclusion

Form Factors (FF)

Form factors $\mathcal{F}_{i j}(z \mid \bar{s} ; \bar{t})$
Bethe vectors, scalar products and form factors for integrable models with higher rank algebras

Eric Ragoucy

$$
\mathcal{F}_{i j}(z \mid \bar{s} ; \bar{t})=\mathbb{C}(\bar{s}) T_{i j}(z) \mathbb{B}(\bar{t}), \quad i, j=1, \ldots, \mathfrak{n}-1
$$

where both $\mathbb{C}(\bar{s})$ and $\mathbb{B}(\bar{t})$ are on-shell Bethe vectors

Three tricks to compute them

- Twisted scalar product trick (diagonal FF)
- Zero mode method (off-diagonal FF)
- Coproduct formula (other FF / Composite models)
- Universal form factor

Again we take $Y\left(g I_{n}\right)$ to give simple formulas.

Diagonal form factors: the twisted scalar product trick

Diagonal FF $\mathcal{F}_{j j}(z \mid \bar{s} ; \bar{t})$ are computed using the "twisted scalar
Bethe vectors, scalar products and form factors for integrable models with higher rank algebras

Eric Ragoucy

Generalized integrable models

$$
\begin{aligned}
\mathfrak{t}_{\bar{\kappa}}(z)-\mathfrak{t}(z) & =\left(\kappa_{1}-1\right) T_{11}(z)+\cdots+\left(\kappa_{\mathfrak{n}}-1\right) T_{\mathfrak{n n}}(z) \\
T_{j j}(z) & =\frac{d}{d \kappa_{j}}\left(\mathfrak{t}_{\bar{\kappa}}(z)-\mathfrak{t}(z)\right), \quad j=1,2, \ldots, \mathfrak{n} \\
\mathcal{F}_{j j}(z \mid \bar{s} ; \bar{t}) & =\frac{d}{d \kappa_{j}}\left[\mathbb{C}_{\bar{k}}(\bar{s})\left(\mathfrak{t}_{\bar{\kappa}}(z)-\mathfrak{t}(z)\right) \mathbb{B}(\bar{t})\right]_{\bar{\kappa}=1} \\
& =\frac{d}{d \kappa_{j}}\left[\left(\tau_{\bar{\kappa}}(z ; \bar{s})-\tau(z ; \bar{t})\right) \mathcal{S}_{\bar{\kappa}}(\bar{s} \mid \bar{t})\right]_{\bar{\kappa}=1}
\end{aligned}
$$

Notations
Bethe vectors
Scalar products
-Reshetikhin form
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula
Universal FF
Summary
Conclusion

- Valid also for $Y\left(\left.g\right|_{\mathfrak{m} \mid \mathrm{p}}\right)$ and $U_{q}\left(\left.\hat{g}\right|_{\mathrm{m}}\right)$
- Det. form only when $\mathcal{S}_{\bar{\kappa}}(\bar{s} \mid \bar{t})$ has one: $Y\left(g g_{3}\right), Y\left(g l_{2 \mid 1}\right), U_{q}\left(\hat{g} I_{3}\right)$

Form factors (off-diagonal): Zero mode method

Zero modes of the monodromy matrix

$$
T_{i j}[0]=\lim _{w \rightarrow \infty} \frac{w}{c} T_{i j}(w)
$$

They form a g / \mathfrak{n} Lie subalgebra in $Y(g / n)$

$$
\begin{aligned}
{\left[T_{i j}[0], T_{k l}[0]\right] } & =\delta_{k j} T_{i l}[0]-\delta_{i l} T_{k j}[0] \\
{\left[T_{i j}[0], T_{k l}(z)\right] } & =\delta_{k j} T_{i l}(z)-\delta_{i l} T_{k j}(z)
\end{aligned}
$$

Bethe vectors and zero modes

$$
\begin{aligned}
\lim _{w \rightarrow \infty} \frac{w}{c} \mathbb{B}\left(\bar{t}^{(1)}, . .,\left\{\bar{t}^{(j-1)}, w\right\}, \bar{t}^{(j)}, . . \bar{t}^{(\mathfrak{n}-1)}\right) & =T_{j-1, j}[0] \mathbb{B}(\bar{t}), \\
\lim _{w \rightarrow \infty} w \mathbb{C}\left(\bar{s}^{(1)}, . .,\left\{\bar{s}^{(j-1)}, w\right\}, \bar{s}^{(j)}, . . \bar{s}^{(\mathfrak{n}-1)}\right) & =\mathbb{C}(\bar{s}) T_{j, j-1}[0] .
\end{aligned}
$$

Bethe vectors, scalar products and form factors for integrable models with higher rank algebras

Eric Ragoucy

Generalized
integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula
Universal FF
Summary
Conclusion

- Valid also for $Y\left(g g_{\mathrm{m} \mid \mathrm{p}}\right)$ and $U_{q}\left(\left.\widehat{g}\right|_{\mathrm{m}}\right)$

Infinite Bethe roots in $Y\left(g g_{\mathrm{m} \mid \mathrm{p}}\right)$

The BAEs are compatible with the limit $t_{k}^{(j)} \rightarrow \infty$ for j and k fixed.

$$
\Rightarrow \operatorname{If} \mathbb{B}(\{w, \bar{t}\}) \text { is on-shell then so is } \mathbb{B}(\{\infty, \bar{t}\})
$$

Generalized
 integrable models

Notations

Highest weight property of on-shell BVs in $Y\left(g g_{\mathrm{m} \mid \mathfrak{p}}\right)$
If $\mathbb{B}(\bar{t})$ and $\mathbb{C}(\bar{s})$ are on-shell, with \bar{t} and \bar{s} finite, then

$$
T_{j, j-1}[0] \mathbb{B}(\bar{t})=0 \quad \text { and } \quad \mathbb{C}(\bar{s}) T_{j, j-1}[0]=0
$$

Bethe vectors
Scalar products
-Reshetikhin form.
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula
Universal FF
Summary
Conclusion

Zero mode method

Idea: use the Lie algebra symmetry generated by the zero modes and the highest weight property of (on-shell) Bethe vectors to obtain relations among form factors

Bethe vectors, scalar products and form factors for integrable models with higher rank algebras

Eric Ragoucy

Generalized
integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form.
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula
Universal FF
Summary
Conclusion

Symbolically: $\lim _{w \rightarrow \infty} \frac{w}{c} \mathcal{F}_{j j}(z \mid \bar{s} ;\{w, \bar{t}\})=\mathcal{F}_{j-1, j}(z \mid \bar{s} ; \bar{t}), \quad w \in \bar{t}^{(j)}$

Form factors (off-diagonal case)

$$
\mathcal{F}_{i, j}(z \mid \bar{s}, \bar{t})=\mathbb{C}(\bar{s}) T_{i j}(z) \mathbb{B}(\bar{t}), \quad i \neq j
$$

$$
\begin{aligned}
\lim _{w \rightarrow \infty} \frac{w}{c} \mathcal{F}_{j j}(z \mid \bar{s} ;\{w, \bar{t}\})=\mathcal{F}_{j-1, j}(z \mid \bar{s} ; \bar{t}), & w \in \bar{t}^{(j)} \\
\lim _{w \rightarrow \infty} \frac{w}{c} \mathcal{F}_{j j}(z \mid\{w, \bar{s}\} ; \bar{t})=-\mathcal{F}_{j, j-1}(z \mid \bar{s} ; \bar{t}), & w \in \bar{s}^{(j)} \\
\lim _{w \rightarrow \infty} \frac{w}{c} \mathcal{F}_{j-1, j}(z \mid \bar{s} ;\{w, \bar{t}\})=\mathcal{F}_{j-2, j}(z \mid \bar{s} ; \bar{t}), & w \in \bar{t}^{(j-1)} \\
\lim _{w \rightarrow \infty} \frac{w}{c} \mathcal{F}_{j, j-1}(z \mid\{w, \bar{s}\} ; \bar{t})=-\mathcal{F}_{j, j-2}(z \mid \bar{s} ; \bar{t}), & w \in \bar{s}^{(j-1)}
\end{aligned}
$$

etc...

\Rightarrow All off-diagonal FF can be deduced from diagonal ones

$$
\lim _{w \rightarrow \infty} \frac{w}{c} \mathcal{F}_{j-1, j}(z \mid\{w, \bar{s}\} ; \bar{t})=\mathcal{F}_{j, j}(z \mid \bar{s} ; \bar{t})-\mathcal{F}_{j-1, j-1}(z \mid \bar{s} ; \bar{t}), \quad w \in \bar{s}^{(j)}
$$

\Rightarrow Altogether only one diagonal FF is needed!
Bethe vectors, scalar products and form factors for integrable models with higher rank algebras

- Valid for $Y\left(\left.g\right|_{m \mid p}\right)$.
- May be adapted to $U_{q}\left(\widehat{g I}_{\mathrm{m}}\right) \ldots$

Coproduct formula and composite models

Local Form Factors

$$
T(z)=T^{(2)}(z) T^{(1)}(z) \quad \text { with } \quad \begin{aligned}
& T^{(2)}(z)=\mathcal{L}_{L}(z) \cdots \mathcal{L}_{m+1}(z) \\
& T^{(1)}(z)=\mathcal{L}_{m}(z) \cdots \mathcal{L}_{1}(z)
\end{aligned}
$$

$m \in[1, L[$ plays the role of a position x in a continuous version.
$T^{(j)}(z)$ are monodromy matrices for "shorter chains".

Coproduct formula

$$
\begin{aligned}
& \mathbb{B}(\bar{u} ; \bar{v})=\sum \frac{\ell_{3}\left(\bar{v}_{I}\right)}{\ell_{1}\left(\bar{u}_{\mathrm{I}}\right)} f\left(\bar{u}_{\mathrm{I}}, \bar{u}_{\mathrm{I}}\right) f\left(\bar{v}_{\mathrm{II}}, \bar{v}_{\mathrm{I}}\right) f\left(\bar{v}_{\mathrm{I}}, \bar{u}_{\mathrm{I}}\right) \\
& \times \mathbb{B}^{(1)}\left(\bar{u}_{\mathrm{I}} ; \bar{v}_{\mathrm{I}}\right) \mathbb{B}^{(2)}\left(\bar{u}_{\mathrm{II}} ; \bar{v}_{\mathrm{I}}\right),
\end{aligned}
$$

where $\mathbb{B}^{(j)}(\bar{u} ; \bar{v})$ are Bethe vectors for $T^{(j)}(z), j=1,2$.

Generalized
integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form. -Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct formula

Universal FF
Summary
Conclusion
N.B. $\mathbb{B}^{(1)}(\bar{u} ; \bar{v})$ and $\mathbb{B}^{(2)}(\bar{u} ; \bar{v})$ are off-shell even when $\mathbb{B}(\bar{u} ; \bar{v})$ is on-shell.

- Valid for $Y\left(g I_{\mathfrak{m} \mid \mathfrak{p}}\right)$ and $U_{q}\left(\left.\widehat{g}\right|_{\mathrm{m}}\right)$.

Universal Form Factors

We consider the FF $\mathcal{F}_{i, j}(z \mid \bar{s}, \bar{t})=\mathbb{C}(\bar{s}) T_{i j}(z) \mathbb{B}(\bar{t})$

When $\mathbb{C}(\bar{s})$ and $\mathbb{B}(\bar{t})$ are on-shell and such that their eigenvalues $\tau(z \mid \bar{s})$ and $\tau(z \mid \bar{t})$ are different

$$
\mathbb{F}_{i, j}(\bar{s}, \bar{t})=\frac{\mathcal{F}_{i, j}(z \mid \bar{s}, \bar{t})}{\tau(z \mid \bar{s})-\tau(z \mid \bar{t})}
$$

is independent of z and does not depend on the monodromy matrix. It depends solely on the R-matrix $\Rightarrow \mathrm{It}$ is model independent.

- Valid for $Y\left(g I_{\mathrm{m} \mid \mathfrak{p}}\right)$.

Bethe vectors, scalar products and form factors for integrable models with higher rank algebras

Eric Ragoucy

Generalized
integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form.
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula
Universal FF

Summary

Conclusion

Summary (1/3): Bethe Vectors

- Expressions for (off-shell) Bethe vectors and their duals
- Trace formula: $Y\left(g I_{\mathfrak{m} \mid \mathfrak{n}}\right)$ and $U_{q}\left(\widehat{g} I_{\mathfrak{m} \mid \mathfrak{n}}\right)$ [TV $\left.07 / B R 08\right]$
- Bethe vectors as projections on Borel subalgebras

$$
U_{q}\left(\widehat{g} I_{\mathfrak{n}}\right)\left[K P \text { 06-10] and } Y\left(g I_{\mathfrak{m} \mid \mathfrak{n}}\right)\right. \text { [1611.09620] }
$$

- Explicit expressions:
- $Y\left(g g_{\mathbf{3}}\right)$ [1210.0768], $U_{q}\left(\widehat{g /_{\mathbf{3}}}\right)$ [1012.1455], $Y\left(\left.g\right|_{\mathbf{2} \mid \mathbf{1}}\right)$ [1604.02311]
- $Y\left(g l_{\mathfrak{m} \mid \mathfrak{n}}\right)$ [1611.09620] and $U_{q}\left(\widehat{g l}_{\mathfrak{n}}\right)$ [1310.3253]
- Action of $T_{i j}(\bar{x})$ on BV s (and/or recursion relations)
- $Y\left(g g_{3}\right)$ [1210.0768], $U_{q}\left(\widehat{g} I_{3}\right)$ [1210.0768],
- $Y\left(g g_{2 \mid 1}\right)$ [1605.06419]
- $Y\left(g I_{\mathfrak{m} \mid \mathfrak{p}}\right)$ [1611.09620] and $U_{q}\left(\left.\widehat{g}\right|_{\mathfrak{m}}\right)$ [1310.3253] from proj. method

Generalized
integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula
Universal FF
Summary
Conclusion

Summary (2/3): Scalar Products

Bethe vectors,

 scalar products and form factors for integrable models with higher rank algebrasEric Ragoucy

- Reshetikhin-like formula (off-shell BVs)
- $Y\left(g /_{3}\right)$ [Reshetikhin '86]
- $U_{q}\left(\widehat{g I_{3}}\right)$ [1311.3500, 1401.4355], $Y\left(g /_{2 \mid 1}\right)$ [1605.09189]
- $Y\left(g l_{\mathfrak{m} \mid \mathfrak{n}}\right)$ [1704.08173], $U_{q}\left(\left.\widehat{g}\right|_{\mathfrak{n}}\right)$ [in preparation]
- Determinant form
- On-shell BVs: $Y\left(g l_{3}\right)$ [1207.0956],
- Semi-on-shell BVs: $Y\left(\left.g\right|_{2 \mid 1}\right)$ [1606.03573]
- Gaudin Determinant form (on-shell BVs)
- $Y\left(g /_{3}\right)$ [Reshetikhin '86]
- $Y\left(g I_{\mathfrak{m} \mid \mathfrak{n}}\right)$ [1705.09219], $U_{q}\left(\widehat{g}_{\mathfrak{n}}\right)$ [in preparation]

Generalized
integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form.
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula
Universal FF
Summary
Conclusion

Summary (3/3): Form Factors

- Twisted scalar product trick

Bethe vectors, scalar products and form factors for integrable models with higher rank algebras

- works for $Y\left(g I_{\mathfrak{m} \mid \mathfrak{n}}\right)$ and $U_{q}\left(\widehat{g}_{\mathfrak{n}}\right)$
- Determinant form
- $Y(g / 3)$ [1211.3968]
- $Y\left(\left.g\right|_{\mathbf{2} \mid \mathbf{1}}\right)$ [1607.04978]

Eric Ragoucy

Generalized
integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula
Universal FF
Summary
Conclusion

Conclusion: still a lot to do...

- A simpler expression for the scalar product of off-shell BVs
- Possibly an integral representation
- See for instance the work of M. Wheeler [1306.0552]
- See also the integral representation coming from Projection method
- A determinant form in the general case (including $U_{q}\left(\widehat{g g_{3}}\right)$)
- Note the determinant expression for XXX model in the thermodynamic limit by I. Kostov [1403.0358]
- Note also for $Y\left(g l_{N}\right)$ with fundamental representations the approach by N. Grommov using a single 'B'-operator [1610.08032]
- Zero mode method ($U_{q}\left(\widehat{g g_{n}}\right)$ case) [work in progress]
- Applications:
- Multi-component Bose gas
- tJ-model
- SYM...
- Complete calculation of correlation functions, asymptotics, etc...

Generalized
integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form.
-Det. formula
-Gaudin det.
Form factors
-Twisted scal.
prod. trick
-Zero mode
method

- Coproduct
formula
Universal FF
Summary
Conclusion

Bethe vectors, scalar products and form factors for integrable models with higher rank algebras

Eric Ragoucy

Generalized
integrable models
Notations
Bethe vectors
Scalar products
Thank you!
-Reshetikhin form
-Det. formula
-Gaudin det.
Form factors
-Twisted scal. prod. trick -Zero mode method
-Coproduct formula

Universal FF
Summary
Conclusion

Bethe vectors, scalar products and form factors for integrable models with higher rank algebras

Eric Ragoucy

Generalized
integrable models
Notations
Bethe vectors
Scalar products
-Reshetikhin form.
-Det. formula
-Gaudin det.
Form factors
-Twisted scal. prod. trick
-Zero mode method
-Coproduct formula

Universal FF
Summary
Conclusion

