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General goal

Compute the correlation functions < O1 · · · On >= tr
(
O1 · · · On

)
for

some local operators O1, · · · ,On

If one has a basis of the space of states H, {|ψ >}, then it is enough to
compute < ψ|O1 · · · On|ψ > (and then sum on ψ’s)

Since we have a basis O|ψ > can be expressed as a linear combination
of ψ’s. Thus, to get the correlation function, we need "only":

1. The basis |ψ >
2. The decomposition O|ψ >=

∑
ψ′ Oψψ′ |ψ

′ >

3. The scalar product < ψ|ψ′ >
4. The form factor < ψ′|O|ψ >

We want to compute the scalar product and the form factors for
integrable models associated to algebras with rank > 2
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Plan of the talk

I Framework: generalized models
I Bethe vectors (BVs)
I Scalar products of BVs

I Reshetikhin formula
I Determinant form
I Gaudin determinant

I Form Factors (FF)
I Twisted scalar product tricks
I Zero mode method
I Coproduct formula

I Summary
I Conclusion

Calculations are rather technical ⇒ ideas & results only!
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General background: generalized quantum integrable models

R-matrix

R(z1, z2) ∈ V ⊗ V with V = End(Cn) and z1, z2 ∈ C spectral
parameters
R(z1, z2) obeys Yang-Baxter equation in V ⊗ V ⊗ V

R12(z1, z2)R13(z1, z3)R23(z2, z3) = R23(z2, z3)R13(z1, z3)R12(z1, z2)

R12 = R ⊗ In ∈ V ⊗ V ⊗ V , R23 = In ⊗ R ∈ V ⊗ V ⊗ V , ..

Universal monodromy matrix T (x) ∈ V ⊗A

Defines the algebra A = Y (glm), Uq(ĝlm),Y (glm|p), ...

R12(z1, z2)T 1(z1)T 2(z2) = T 2(z2)T 1(z1)R12(z1, z2)

T (z) =
n∑

i,j=1

eij ⊗ Tij(z) ∈ V ⊗A[[z−1]] ,

T 1(z1) = T (z1)⊗ In ∈ V ⊗V ⊗A; T 2(z2) = In⊗T (z2) ∈ V ⊗V ⊗A
n = rankA (i.e. n = m,m + p, ...)



Bethe vectors,
scalar products
and form factors
for integrable

models with higher
rank algebras

Eric Ragoucy

Generalized
integrable models

Notations

Bethe vectors

Scalar products
-Reshetikhin form.
-Det. formula
-Gaudin det.

Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula

Universal FF

Summary

Conclusion

Generalized quantum integrable models

Transfer matrix t(z)

For algebras

t(z) = Tr T (z) = T11(z) + ...+ Tnn(z)

For superalgebras

t(z) = sTr T (z) =
n∑

i=1

(−1)[i ]Tii (z)

= T11(z) + ...+ Tmm(z)− Tm+1,m+1(z)− ...− Tp+m,p+m(z)

Due to YBE [t(z) , t(z ′)] = 0, the transfer matrix defines an integrable
model (with periodic boundary conditions).
In general, the Hamiltonian is chosen as H = − d

dz
ln t(z)

∣∣∣
z=z0

.



Bethe vectors,
scalar products
and form factors
for integrable

models with higher
rank algebras

Eric Ragoucy

Generalized
integrable models

Notations

Bethe vectors

Scalar products
-Reshetikhin form.
-Det. formula
-Gaudin det.

Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula

Universal FF

Summary

Conclusion

Choice of a (lowest weight) representation A:

Tjj(z)|0〉 = λj(z)|0〉, j = 1, .., n Tij(z)|0〉 = 0, 1 ≤ j < i ≤ n

Up to normalisation of T (z), we only need the ratios

ri (z) =
λi (z)

λi+1(z)
, i = 1, ..., n− 1.

we keep ri (z) as free functional parameters.

The calculation is valid for any representation (provided it is
lowest/highest weight): these are the generalized models
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Example: the "fundamental" spin chain

For A = Y (glm), Uq(ĝlm),Y (glm|p), ..., we consider the following
monodromy matrix:

T 0(z |z̄) = R01(z − z1)R02(z − z2) · · ·R0L(z − zL)

λ1(z) =
L∏
`=1

(
1− 1

z − z`

)
λj(z) = 1 j = 2, ..., n

It corresponds to a periodic spin chain with L sites, each of them
carrying a fundamental representation of A.

I 1, 2, ..., L are the quantum (physical) spaces of the spin chain. Here
they are n-dimensional: on each site the "spins" can take n values.

I z̄ = {z1, ..., zL} are the inhomogneities.
I 0 is the auxiliary space.
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To illustrate the talk, we will focus on Y (gln) (rational R-matrix)
and possibly take n = 3:

R(z1, z2) = I + g(z1, z2)P ∈ End(C3)⊗ End(C3)

g(z1, z2) =
c

z1 − z2

I is the identity matrix, P is the permutation matrix between two spaces
End(C3), c is a constant.
It corresponds to XXX-like models and is based on Y (gl3).

R(z1, z2) =



f 0 0 0 0 0 0 0 0
0 1 0 g 0 0 0 0 0
0 0 1 0 0 0 g 0 0
0 g 0 1 0 0 0 0 0
0 0 0 0 f 0 0 0 0
0 0 0 0 0 1 0 g 0
0 0 g 0 0 0 1 0 0
0 0 0 0 0 g 0 1 0
0 0 0 0 0 0 0 0 f


Y (gl3): g ≡ g(z1, z2) and f ≡ f (z1, z2) = 1 + g(z1, z2)
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Notations

We have already introduced
I The functions

g(z1, z2) =
c

z1 − z2
and f (z1, z2) =

z1 − z2 + c

z1 − z2
,

that enter in the definition of the R-matrix
⇒ The interaction in the bulk (XXX or XXZ type).

I The free functionals

ri (z) =
λi (z)

λi+1(z)
, i = 1, ..., n− 1

that (potentially) describe the representation
⇒ The type of spin chain (spins and length of the chain).

We also use

h(z1, z2) =
f (z1, z2)

g(z1, z2)
, t(z1, z2) =

g(z1, z2)

h(z1, z2)
.
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Notations

Many sets of variables (/ ... don’t be scared)
I "bar" always denote sets of variables: w̄ , ū, v̄ etc..
I Individual elements of the sets have latin subscripts: wj , uk , etc..
I # is the cardinality of a set: w̄ = {w1,w2} ⇒ #w̄ = 2, etc...
I Subsets of variables are denoted by roman indices: ūI, v̄iv, w̄II, etc.
I Special case: ūj = ū \ {uj}, w̄k = w̄ \ {wk}, etc...
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Notations

Many sets of variables ,
I "bar" always denote sets of variables: w̄ , ū, v̄ etc..
I Individual elements of the sets have latin subscripts: wj , uk , etc..
I # is the cardinality of a set: w̄ = {w1,w2} ⇒ #w̄ = 2, etc...
I Subsets of variables are denoted by roman indices: ūI, v̄iv, w̄II, etc.
I Special case: ūj = ū \ {uj}, w̄k = w̄ \ {wk}, etc...

Shorthand notations for products of scalar functions
(when they depend on one or two variables):

f (ūII, ūI) =
∏

uj∈ūII

∏
uk∈ūI

f (uj , uk),

r1(ūII) =
∏

uj∈ūII

r1(uj); g(vk , w̄) =
∏
wj∈w̄

g(vk ,wj), etc..
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Bethe vectors (BVs)

Framework: Algebraic-Nested Bethe Ansatz (Leningrad school 80’s)
[Faddeev, Kulish, Reshetikhin, Sklyanin, Takhtajan, ...]

For "usual" XXX (gl2) spin chain

Only one ’raising’ operator T12(z) and one set of Bethe parameters ū:

Ba(ū) = T12(u1)T12(u2) · · ·T12(ua)|0〉,

For higher rank n:

There are many raising operators Ti,i+1(z), i = 1, 2, ..., n− 1.
There are n− 1 sets of Bethe parameters:

t̄(j) = {t(j)
1 , ..., t(j)

aj } , #t̄(j) = aj ∈ Z+ , j = 1, 2, ..., n− 1

t̄ = {t̄(1), t̄(2), ...., t̄(n−1)} , ā = {a1, a2, ..., an−1}

Bā(t̄) appears to be much more complicated...
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On-shell Bethe vectors and Bethe equations

Bā(t̄) is a transfer matrix eigenvector

t(z)Bā(t̄) = τ(z |t̄)Bā(t̄)

provided the Bethe equations (BAEs) are obeyed:

ri (t̄
(i)
I ) =

f (t̄
(i)
I , t̄

(i)
II )

f (t̄
(i)
II , t̄

(i)
I )

f (t̄(i+1), t̄
(i)
I )

f (t̄
(i)
I , t̄(i−1))

, i = 1, ..., n− 1

with t̄(0) = ∅ = t̄(n)

that hold for arbitrary partitions of the sets t̄(j) into subsets {t̄(j)
I , t̄

(j)
II }.

In that case, Bā(t̄) will be called an on-shell BV

Generalized models
The Bethe equations are not seen as a ’quantization’ of the Bethe
parameters t̄ anymore
But rather as functional relations on the functions ri (x), i = 1, ..., n− 1.



Bethe vectors,
scalar products
and form factors
for integrable

models with higher
rank algebras

Eric Ragoucy

Generalized
integrable models

Notations

Bethe vectors

Scalar products
-Reshetikhin form.
-Det. formula
-Gaudin det.

Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula

Universal FF

Summary

Conclusion

Presentation for Y (gl3): t̄(1) ≡ ū and t̄(2) ≡ v̄

Known formulas: Trace formula [’07 Tarasov & Varchenko]

Ba,b(ū; v̄) = tr
( ∈Y (gl3)⊗V⊗(a+b)︷ ︸︸ ︷
T(ū; v̄)R(ū; v̄) e⊗a

21 ⊗ e⊗b
32

)
︸ ︷︷ ︸

∈Y (gl3)

|0〉

#ū = a , #v̄ = b , eij = 3× 3 elementary matrices

The trace is taken over a + b auxiliary spaces, i.e. in End(C3)⊗(a+b)

T(ū, v̄) = T 1(u1) · · ·T a(ua)T a+1(v1) · · ·T a+b(vb)

R(ū, v̄) =
(
Ra,a+1(ua, v1) · · ·Ra,a+b(ua, vb)

)
· · · ×

× · · ·
(
R1,a+1(u1, v1) · · ·R1,a+b(u1, vb)

)
I Valid for Y (glm) and Uq(ĝlm).

I Exists also for superalgebras Y (glm|p) and Uq(ĝlm|p)
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Recursion formulas

λ2(uk)f (v̄ , uk)Ba+1,b(ū; v̄) = T12(uk)Ba,b(ūk ; v̄) +

+
b∑

i=1

g(vi , uk)f (v̄i , vi )T13(uk)Ba,b−1(ūk ; v̄i ),

λ2(vk)f (vk , ū)Ba,b+1(ū; v̄) = T23(vk)Ba,b(ū; v̄k) +

+
a∑

j=1

g(vk , uj)f (uj , ūj)T13(vk)Ba−1,b(ūj ; v̄k).

N.B. Since T12(z), T23(z) and T13(z) are associated resp. to the gl3
roots α, β and α + β, Ba,b(ū; v̄) "behaves" as the root aα + b β.
Cf. gl2 case: Ba+1(ū) = T12(uk)Ba(ūk).

In fact Tij(z) and BVs are eigenvectors of the zero modes Tkk [0], see
later.

I Valid for Y (gl3) and Uq(ĝl3).

I Exists also for Y (glm|p) and Uq(ĝln).
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Explicit formulas

Ba,b(ū; v̄) =
∑ Kk(v̄I|ūI)

λ2(v̄II)λ2(ū)

f (v̄II, v̄I)f (ūII, ūI)

f (v̄II, ū)f (v̄I, ūI)
T12(ūII)T13(ūI)T23(v̄II)|0〉

(Plus other formulas with different order of T12, T13, T23)

The sums are taken over partitions of the sets:
ū ⇒ {ūI, ūII} and v̄ ⇒ {v̄I, v̄II} with 0 ≤ #ūI = #v̄I = k ≤ min(a, b).

Kk(v̄I|ūI) is the Izergin–Korepin determinant

Kk(x̄ |ȳ) = ∆k(x̄) ∆′k(ȳ) h(x̄ , ȳ) det
k

[t(xi , yj)]

∆k(x̄) =
k∏

`<m

g(x`, xm) ; ∆′k(ȳ) =
k∏

`<m

g(ym, y`)

I Valid for Y (gl3) and Uq(ĝl3).

I Exists also for Y (glm|p) and Uq(ĝln).
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Current presentation and projection method

We use of projectors method in the current realization of DY (gl3),
[Khoroshkin, Pakuliak and collaborators 2006-10]

N.B. The current realization is related to a Gauss decomposition of the
monodromy matrix T (z)

Explicit expression of BVs in a different basis

B(ū, v̄) = P+
f

(
F1(u1) · · ·F1(ua)F2(v1) · · ·F2(vb)

)
K1(ū)K2(v̄) |0〉

I K1(z) and K2(z) are the Cartan generators
I F1(z) generator associated to the first simple (negative) root
I F2(z) generator associated to the second simple (negative) root
I P+

f projector of the Borel subalgebra on the positive modes

Useful to get explicit expressions and recursion relations

I Valid for Y (glm|p) and Uq(ĝlm).
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All these formulas are related
I Explicit expressions obey the recursion formulas
I Trace formula obeys the recursion formulas
I Recursion formulas uniquely fix the BVs,

once Ba,0(ū, .) or B0,b(., v̄) are known.
I The projection of currents coincides with the trace formula

Bethe vectors B(t̄)

I On-shell BVs: the BAEs are obeyed so that

t(z)B(t̄) = τ(z |t̄)B(t̄)

I Off-shell BVs otherwise

Dual Bethe vectors C(t̄)

I On-shell dual BVs: the (same) BAEs are obeyed so that

C(t̄) t(z) = τ(z |t̄)C(t̄)

I Off-shell dual BVs otherwise
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Scalar products of BVs: Reshetikhin formula

S(s̄|t̄) = Cb̄(s̄)Bā(t̄)

s̄ = {s̄(1), s̄(2), ....s̄(n−1)}, #s̄(j) = bj , b̄ = {b1, b2, ..., bn−1}
t̄ = {t̄(1), t̄(2), ....t̄(n−1)} , #t̄(j) = aj , ā = {a1, a2, ..., an−1}

General formula given by Reshetikhin formula

S(s̄|t̄) =
∑

Wpart(s̄I, s̄II|t̄I, t̄II)
n−1∏
j=1

rj(s̄
(j)
I )rj(t̄

(j)
II ).

The sum is taken over all possible partitions such that #t̄
(j)
I = #s̄

(j)
I .

The expression is valid for all BVs (on-shell or off-shell).

I Valid for Y (glm|p) and Uq(ĝlm).

But difficult to handle ⇒ we look for determinant expressions for S(s̄|t̄).
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Scalar products of BVs: determinant formula

Here we consider the case n = 3 and the scalar product of an on-shell
Bethe vector

t(z)Ba,b(ūB ; v̄B) = τ(z |ūB , v̄B)Ba,b(ūB ; v̄B) and BAEs

with a twisted dual on-shell Bethe vector

Ca,b
κ (ūC ; v̄C ) tκ(z) = τκ(z |ūC , v̄C )Ca,b

κ (ūC ; v̄C )

with twisted BAEs

tκ(z) = tr
(
M T (z)

)
with M =

 1 0 0
0 κ 0
0 0 1


tκ(z) = T11(z) + κT22(z) + T33(z)

Sa,b
κ ≡ Ca,b

κ (ūC ; v̄C )Ba,b(ūB ; v̄B)
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Sa,b
κ = f (v̄C , ūC )f (v̄B , ūB)t(v̄C , ūB)∆′a(ūC )∆a(ūB)∆′b(v̄C )∆b(v̄B)

× det
a+b
M,

∆′n(w̄) =
n∏

j>k

g(wj ,wk), ∆n(w̄) =
n∏

j<k

g(wj ,wk).

M is a (a + b)× (a + b) matrix. For ξ̄ = {ūB , v̄C}:

Mj,k =
c

g(ξk , ūC )g(v̄C , ξk)

∂τκ(ξk |ūC , v̄C )

∂uC
j

, j = 1, . . . , a,

Ma+j,k =
−c

g(ξk , ūB)g(v̄B , ξk)

∂τ(ξk |ūB , v̄B)

∂vB
j

, j = 1, . . . , b.

I Valid for a twist {κ1, κ2, κ3} up to corrections in (κi − 1)(κj − 1).

I Exists for Uq(ĝl3) for the twist {1, κ, 1}.
I Exists for Y (gl2|1) and Y (gl1|2).
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Norm of on-shell BVs: Gaudin determinant

We present the example Y (gln)

Rewriting of the BAEs

Φ
(i)
k = ri (t

(i)
k )

f (t̄
(i)
k , t

(i)
k )

f (t
(i)
k , t̄

(i)
k )

f (t
(i)
k , t̄

(i−1))

f (t̄(i+1), t
(i)
k )

,
k = 1, ..., ai
i = 1, ..., n− 1

BAEs : Φ
(i)
k = 1

The Gaudin matrix

The Gaudin matrix G is a block matrix
(
G (i,j)

)
i,j=1,..,n−1

Each block G (i,j), of size ai × aj , has entries

G
(i,j)
k,l = −c

∂ ln(Φ
(i)
k )

∂ t
(j)
l
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Norm of B(t̄): S(t̄) = C(t̄)B(t̄)

For an on-shell B(t̄)

S(t̄) =
n∏

i=1

ai∏
k=1

( f (t̄
(i)
k , t

(i)
k )

f (t̄(i+1), t
(i)
k )

)
detG

N.B. B and C have to be on-shell. In that case C(s̄)B(t̄) = δs̄,t̄ S(t̄)

I Valid for Y (glm|p) and Uq(ĝlm).
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Form Factors (FF)

Form factors Fij(z |s̄; t̄)

Fij(z |s̄; t̄) = C(s̄)Tij(z)B(t̄), i , j = 1, ..., n− 1

where both C(s̄) and B(t̄) are on-shell Bethe vectors

Three tricks to compute them
I Twisted scalar product trick (diagonal FF)
I Zero mode method (off-diagonal FF)
I Coproduct formula (other FF / Composite models)
I Universal form factor

Again we take Y (gln) to give simple formulas.
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Diagonal form factors: the twisted scalar product trick

Diagonal FF Fjj(z |s̄; t̄) are computed using the "twisted scalar
product" trick

tκ̄(z)− t(z) = (κ1 − 1)T11(z) + · · ·+ (κn − 1)Tnn(z)

Tjj(z) =
d

dκj

(
tκ̄(z)− t(z)

)
, j = 1, 2, ..., n

Fjj(z |s̄; t̄) =
d

dκj

[
Cκ̄(s̄)

(
tκ̄(z)− t(z)

)
B(t̄)

]
κ̄=1

=
d

dκj

[(
τκ̄(z ; s̄)− τ(z ; t̄)

)
Sκ̄(s̄|t̄)

]
κ̄=1

I Valid also for Y (glm|p) and Uq(ĝlm)

I Det. form only when Sκ̄(s̄|t̄) has one: Y (gl3), Y (gl2|1), Uq(ĝl3)
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Form factors (off-diagonal): Zero mode method

Zero modes of the monodromy matrix

Tij [0] = lim
w→∞

w

c
Tij(w)

They form a gln Lie subalgebra in Y (gln)[
Tij [0] , Tkl [0]

]
= δkj Til [0]− δil Tkj [0][

Tij [0] , Tkl(z)
]

= δkj Til(z)− δil Tkj(z)

Bethe vectors and zero modes

lim
w→∞

w

c
B(t̄(1), .., {t̄(j−1),w}, t̄(j), ..t̄(n−1)) = Tj−1,j [0]B(t̄),

lim
w→∞

w C(s̄(1), .., {s̄(j−1),w}, s̄(j), ..s̄(n−1)) = C(s̄)Tj,j−1[0].

I Valid also for Y (glm|p) and Uq(ĝlm)
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Infinite Bethe roots in Y (glm|p)

The BAEs are compatible with the limit t(j)
k →∞ for j and k fixed.

⇒ If B({w , t̄}) is on-shell then so is B({∞, t̄})

Highest weight property of on-shell BVs in Y (glm|p)

If B(t̄) and C(s̄) are on-shell, with t̄ and s̄ finite, then

Tj,j−1[0]B(t̄) = 0 and C(s̄)Tj,j−1[0] = 0
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Zero mode method

Idea: use the Lie algebra symmetry generated by the zero modes and
the highest weight property of (on-shell) Bethe vectors to obtain
relations among form factors

Fij(z |s̄; t̄) = C(s̄)Tij(z)B(t̄)

lim
w→∞

w

c
Fjj(z |s̄; t̄(1), .., {t̄(j−1),w}, t̄(j), ..t̄(n−1))

= C(s̄)Tjj(z) lim
w→∞

w

c
B(t̄(1), .., {t̄(j−1),w}, t̄(j), ..t̄(n−1)))

= C(s̄)Tjj(z)Tj−1,j [0]B(t̄)

= C(s̄)
[
Tjj(z) , Tj−1,j [0]

]
B(t̄)

= C(s̄)Tj−1,j(z)B(t̄))

= Fj−1,j(z |s̄; t̄).

Symbolically: lim
w→∞

w

c
Fjj(z |s̄; {w , t̄}) = Fj−1,j(z |s̄; t̄), w ∈ t̄(j)
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Form factors (off-diagonal case)

Fi,j(z |s̄, t̄) = C(s̄)Tij(z)B(t̄), i 6= j

lim
w→∞

w

c
Fjj(z |s̄; {w , t̄}) = Fj−1,j(z |s̄; t̄), w ∈ t̄(j)

lim
w→∞

w

c
Fjj(z |{w , s̄}; t̄) = −Fj,j−1(z |s̄; t̄), w ∈ s̄(j)

lim
w→∞

w

c
Fj−1,j(z |s̄; {w , t̄}) = Fj−2,j(z |s̄; t̄), w ∈ t̄(j−1)

lim
w→∞

w

c
Fj,j−1(z |{w , s̄}; t̄) = −Fj,j−2(z |s̄; t̄), w ∈ s̄(j−1)

etc...

⇒ All off-diagonal FF can be deduced from diagonal ones

lim
w→∞

w

c
Fj−1,j(z |{w , s̄}; t̄) = Fj,j(z |s̄; t̄)−Fj−1,j−1(z |s̄; t̄), w ∈ s̄(j)

⇒ Altogether only one diagonal FF is needed!

I Valid for Y (glm|p).

I May be adapted to Uq(ĝlm)...
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Coproduct formula and composite models

Local Form Factors

T (z) = T (2)(z)T (1)(z) with
T (2)(z) = LL(z) · · · Lm+1(z)

T (1)(z) = Lm(z) · · · L1(z)

m ∈ [1, L[ plays the role of a position x in a continuous version.
T (j)(z) are monodromy matrices for "shorter chains".

Coproduct formula

B(ū; v̄) =
∑ `3(v̄II)

`1(ūI)
f (ūI, ūII)f (v̄II, v̄I)f (v̄I, ūI)

×B(1)(ūI; v̄I) B(2)(ūII; v̄II),

where B(j)(ū; v̄) are Bethe vectors for T (j)(z), j = 1, 2.

N.B. B(1)(ū; v̄) and B(2)(ū; v̄) are off-shell even when B(ū; v̄) is on-shell.

I Valid for Y (glm|p) and Uq(ĝlm).



Bethe vectors,
scalar products
and form factors
for integrable

models with higher
rank algebras

Eric Ragoucy

Generalized
integrable models

Notations

Bethe vectors

Scalar products
-Reshetikhin form.
-Det. formula
-Gaudin det.

Form factors
-Twisted scal.
prod. trick
-Zero mode
method
-Coproduct
formula

Universal FF

Summary

Conclusion

Universal Form Factors

We consider the FF Fi,j(z |s̄, t̄) = C(s̄)Tij(z)B(t̄)

When C(s̄) and B(t̄) are on-shell and such that their eigenvalues τ(z |s̄)
and τ(z |t̄) are different

Fi,j(s̄, t̄) =
Fi,j(z |s̄, t̄)

τ(z |s̄)− τ(z |t̄)

is independent of z and does not depend on the monodromy matrix. It
depends solely on the R-matrix ⇒ It is model independent.

I Valid for Y (glm|p).
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Summary (1/3): Bethe Vectors

I Expressions for (off-shell) Bethe vectors and their duals
I Trace formula: Y (glm|n) and Uq(ĝlm|n) [TV 07 / BR 08]
I Bethe vectors as projections on Borel subalgebras

Uq(ĝln) [KP 06-10] and Y (glm|n) [1611.09620]
I Explicit expressions:

I Y (gl3) [1210.0768], Uq(ĝl3) [1012.1455], Y (gl2|1) [1604.02311]
I Y (glm|n) [1611.09620] and Uq(ĝln) [1310.3253]

I Action of Tij(x̄) on BVs (and/or recursion relations)
I Y (gl3) [1210.0768], Uq(ĝl3) [1210.0768],
I Y (gl2|1) [1605.06419]
I Y (glm|p) [1611.09620] and Uq(ĝlm) [1310.3253] from proj. method
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Summary (2/3): Scalar Products

I Reshetikhin-like formula (off-shell BVs)
I Y (gl3) [Reshetikhin ’86]
I Uq(ĝl3) [1311.3500, 1401.4355], Y (gl2|1) [1605.09189]
I Y (glm|n) [1704.08173], Uq(ĝln) [in preparation]

I Determinant form
I On-shell BVs: Y (gl3) [1207.0956],
I Semi-on-shell BVs: Y (gl2|1) [1606.03573]

I Gaudin Determinant form (on-shell BVs)
I Y (gl3) [Reshetikhin ’86]
I Y (glm|n) [1705.09219], Uq(ĝln) [in preparation]
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Summary (3/3): Form Factors

I Twisted scalar product trick
I works for Y (glm|n) and Uq(ĝln)
I Determinant form

I Y (gl3) [1211.3968]
I Y (gl2|1) [1607.04978]

I The zero mode method
I works for Y (glm|n)

I Infinite Bethe roots for Uq(ĝln)? [in progress]
I Determinant form

I Y (gl3) [1312.1488, 1406.5125]
I Y (gl2|1) [1607.04978]

I Coproduct formula
I The coproduct formula exists for Y (glm|n) and Uq(ĝln)
I Y (gl3) for 2-component Bose gaz [1502.06749, 1503.00546]
I Y (gl2|1) for t-J model [Fuksa-Slavnov 1701.05866], [J. Fuksa

1611.00943]
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Conclusion: still a lot to do...

I A simpler expression for the scalar product of off-shell BVs
I Possibly an integral representation

I See for instance the work of M. Wheeler [1306.0552]
I See also the integral representation coming from Projection method

I A determinant form in the general case (including Uq(ĝl3))
I Note the determinant expression for XXX model in the

thermodynamic limit by I. Kostov [1403.0358]
I Note also for Y (glN ) with fundamental representations the approach

by N. Grommov using a single ’B’-operator [1610.08032]

I Zero mode method (Uq(ĝln) case) [work in progress]
I Applications:

I Multi-component Bose gas
I tJ-model
I SYM...

I Complete calculation of correlation functions, asymptotics, etc...
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Thank you!
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