
Four point functions in 2D 
geometrical stat. mech. models 

There is no royal road to geometry (Euclid)

Work in (slow) progress with J. Jacobsen



Geometrical correlations

 Are natural to consider in ordinary spin models such as  Ising model: 

spin clusters at criticality

Are even more natural to consider in geometrical models such as percolation or 
self-avoiding walks 

 Are also of interest in related contexts such as Anderson transitions



the difficulty lies in the (mild) non-locality of the questions 
asked and objects considered

x
x
x

can be dealt with but at a 
price: 

loss of unitarity



waves of theoretical approaches (in 2D)  

 Conformal invariance mixed with Coulomb gas techniques  
                                                     

critical exponents: eg fractal dimension of Ising clusters 

 Schramm Loewner Evolution 

proofs of values of critical exponents

a few correlation functions (partition functions): eg probability to have 
spin clusters of such and such shape on torus 

more correlation functions: eg probability of having clusters percolate  
through a rectangle with such and such shape 
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 The forefront is now the four point functions

it is a non trivial step because Liouville              is sick: 
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Ĉ(0, ↵̂1, ↵̂2) 6= 0 when ↵̂1 6= ↵̂2!
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Virasoro degeneracies  (and thus logarithmic features) crop up

Simplest example (probably) : in percolation problem
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Ĉ(↵̂
1

, ↵̂
2

, 0) 6= 0

Ĉ(↵̂, 0, 0) 6= 0

Pabab

Pabba

1

x

x

x

x

1

2

3

4

P (1, 2, 3) =
Ch1/2,0,h1/2,0,h1/2,0

|z
12

z
13

z
23

|2h1/2,0

h
1/2,0 =

5

96

Z
Potts

=
X

{�i}

Y

<jk>

eK�(�i,�j), �i = 1, . . . , Q

Z
FK

=
X

C
(eK � 1)BQC

Z
Loops

= (
p
Q)S

X

P
(
p

Q)L

n =
p

Q
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Reminder: Potts model = cluster model 
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CLuster are in one to one correspondence with loops: 



An interesting proposal [Picco,Ribault, Santachiara] 

The functions P1, P2 and P3 are related to one another by permutations of their arguments,

P1(z1, z2, z3, z4) = P2(z1, z3, z2, z4) = P3(z1, z3, z4, z2) . (1.10)

Moreover, global conformal symmetry implies

Pσ

({

azi + b

czi + d

})

=
4
∏

i=1

|czi + d|4∆(0,12 ) · Pσ({zi}) , (σ = 0, 1, 2, 3) . (1.11)

Since the group of global conformal transformations z → az+b
cz+d

is three-dimensional, it

determines the dependence of Pσ({zi}) on only three of its four variables. The remaining
fourth variable, which is invariant under these transformations, is the cross-ratio

z =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
. (1.12)

This is why four-point functions encode much more information than two- and three-point
functions.

We interpret the four-point connectivities Pσ as four-point functions of conformal
primary fields that all have dimensions ∆ = ∆̄ = ∆(0, 12 )

. Assuming local conformal sym-

metry, such four-point functions are combinations of Virasoro conformal blocks F (k)
∆ ({zi}),

R =
∑

(∆,∆̄)∈S(k)

D(k)
∆,∆̄

F (k)
∆ ({zi})F (k)

∆̄
({z̄i}) , (k ∈ {s, t, u}) . (1.13)

The index k labels a channel, such that each formula for R is an expansion around a given

geometrical limit:

channel limit

s z1 → z2
t z1 → z4
u z1 → z3

(1.14)

Each term in the sum is the contribution of a primary state of left and right dimensions ∆

and ∆̄, plus its descendent states. The equality of the expressions for R in the s, t and u
channels is a constraint on the spectrums S(k) and on the structure constants D(k)

∆,∆̄
, called

crossing symmetry. The conformal bootstrap approach consists in solving this constraint.
(Consistency of the theory on a torus would lead to the further constraint of modular
invariance, which however applies to the complete spectrum of the theory, and does not

constrain our OPE spectrums S(k).)
In two-dimensional theories such as Virasoro minimal models, the spectrums are

known, and finite. The crossing symmetry equations can then be solved exactly, resulting
in analytic expressions for the structure constants [11]. On the other hand, in higher-

dimensional theories such as the three-dimensional Ising model, only some qualitative
features of the spectrums are known. Crossing symmetry can then be used for numerically
estimating a few of the infinitely many dimensions (∆, ∆̄), and the associated structure

constants [12, 13]. Here we will follow the intermediate approach of numerically estimating
a few structure constants, based on exact guesses for the spectrums.
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for generic values of c and ∆ (conformal blocks)

make a conjecture about the spectrum
assume the spectrum is the same in two of the three channels
solve crossing consistency conditions e.g. 

we hoped to build unitary theories, but unitary theories cannot exist for generic values of

c < 1 [11].

We are now ready to introduce our two main ansätze:

Spectrum Leading state Even spin?

S2Z,Z+ 1
2

(∆(0, 12 )
,∆(0, 12 )

) No

S2Z,Z (∆(0,0),∆(0,0)) Yes

(2.5)

Our main motivation for S2Z,Z+ 1
2
is that it has the desired leading state. An additional

motivation for both ansätze is that for q = 4, these spectrums are known to occur in four-

point functions of the type of Pσ. Such four-point functions have indeed been computed
in the Ashkin–Teller model, of which the four-state Potts model is a special case [15].

Moreover, the dimensions ∆(0,Z+ 1
2
) correspond to the magnetic series identified in [16–18],

and the spectrum S2Z,Z+ 1
2
appear in the partition functions discussed in [19].

2.2 Structure constants

Let us assume that we have the same known spectrum S(s) = S(t) = S in the s- and
t-channels, with the same unknown structure constants D(s)

∆,∆̄
= D(t)

∆,∆̄
= D∆,∆̄. Let us

determine these structure constants using the crossing symmetry equation

∑

(∆,∆̄)∈S

D∆,∆̄

(

F (s)
∆ ({zi})F (s)

∆̄
({z̄i})− F (t)

∆ ({zi})F (t)
∆̄
({z̄i})

)

= 0 . (2.6)

This sum typically converges fast when the total dimension ∆ + ∆̄ increases. So let us

truncate the spectrum, and consider the subspectrum S(N) made of the N states with
the lowest total dimensions. Normalizing the leading state structure constant to one, we
determine the remaining N − 1 structure constants of S(N) by randomly choosing N − 1

values of the positions {zi}. We call the spectrum consistent if the resulting structure
constants are independent from the choice of {zi} in the limit N → ∞. In practice,

we randomly choose 10 values of {zi}, and compute the mean D∆,∆̄(N) and coefficient
of variation c∆,∆̄(N) of each structure constant. The structure constants D∆,∆̄ are then

D∆,∆̄ = lim
N→∞

D∆,∆̄(N). For consistent spectrums, we find c∆,∆̄(N ∼ 20) < 10−5 for

the first few structure constants. The precision of our conformal bootstrap has been
evaluated also by testing it with the generalized minimal model correlation functions

whose structure constants are known and given by Dotsenko-Fateev Coulomb gas integrals
[20]. For inconsistent spectrums, we typically find c∆,∆̄(N) > 10−2 for all N and all

structure constants.

2.3 Results

For all values of c that obey (2.4), we find that the spectrum S2Z,Z+ 1
2
is consistent. For

example, at c = 0, let us display the first 9 states in this spectrum, together with the
values of their conformal dimensions, of their structure constants, and of the coefficients
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Let us now insert the OPE in a four-point function of primary fields:
〈

V∆1
(z)V∆2

(0)V∆3
(∞)V∆4

(1)
〉

=
∑

∆∈S

C∆1,∆2,∆|z|
2(∆−∆1−∆2)

×
(〈

V∆(0)V∆3
(∞)V∆4

(1)
〉

+O(z)
)

, (3.12)

=
∑

∆∈S

C∆1,∆2,∆C∆,∆3,∆4
|z|2(∆−∆1−∆2)

(

1 +O(z)
)

. (3.13)

The contributions of descendents factorize into those of left-moving descendents, generated
by the operators Ln<0, and right-moving descendents, generated by L̄n<0. So the last
factor has a holomorphic factorization such that

〈

V∆1
(z)V∆2

(0)V∆3
(∞)V∆4

(1)
〉

=
∑

∆∈S

C∆1,∆2,∆C∆,∆3,∆4
F (s)

∆ (z)F (s)
∆ (z̄) . (3.14)

Definition 3.7 (Conformal block)
The four-point conformal block on the sphere,

F (s)
∆ (z) = z∆−∆1−∆2

(

1 +O(z)
)

, (3.15)

is the normalized contribution of the Verma module V∆ to a four-point function, obtained
by summing over left-moving descendents. Its dependence on c,∆1,∆2,∆3,∆4 are kept
implicit. The label (s) stands for for s-channel, we will soon see what this means.

Conformal blocks are in principle known, as they are universal functions, entirely deter-
mined by conformal symmetry. This is analogous to characters of representations, also
known as zero-point conformal blocks on the torus.

Exercise 3.8 (Computing conformal blocks)

Compute the conformal block F (s)
∆ (z) up to the order O(z), and find

F (s)
∆ (z) = z∆−∆1−∆2

(

1 +
(∆ +∆1 −∆2)(∆+∆4 −∆3)

2∆
z +O(z2)

)

. (3.16)

Show that the first-order term has a pole when the Verma module V∆ has a null vector
at level one. Compute the residue of this pole. Compare the condition that this residue
vanishes with the condition (2.26) that three-point functions involving V⟨1,1⟩ exist.

Our axiom 2.7 on the commutativity of fields implies that the OPE is associative, and
that we can use the OPE of any two fields in a four-point function. In particular, using
the OPE of the first and fourth fields, we obtain

〈

V∆1
(z)V∆2

(0)V∆3
(∞)V∆4

(1)
〉

=
∑

∆∈S

C∆,∆1,∆4
C∆2,∆3,∆F

(t)
∆ (z)F (t)

∆ (z̄) , (3.17)

where F (t)
∆ (z) = (z−1)∆−∆1−∆4

(

1+O(z−1)
)

is a t-channel conformal block. The equality

of our two decompositions (3.14) and (3.17) of the four-point function is called crossing
symmetry, schematically

∑

∆s∈S

C12sCs34

2
s

3

1 4

=
∑

∆t∈S

C23tCt41

2

t

1

3

4

. (3.18)
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Conformal invariance restricts the form of four point functions of local fields. They can be written 

The unknowns are the values of          (the spectrum). The functions             are determined by general principles        
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Some detail on exponents

(ii) identifying non-isotopic (in the annulus) diagrams connecting the same sites.

(iii) setting uN = 1, which allows one to unwind through lines, and

h Explain item (ii) better

The first and second constraints are only relevant in the case j = 0. The first constraint leads to
z2 = q±2. In this case in fact, the a�ne TL module W

0,q2 is reducible, and identifying non-isotopic
diagrams corresponds to the quotient W

0,q2 of dimension

d
0

= dim W
0,q2 =

✓
N

N/2

◆
�

✓
N

N/2 + 1

◆
, (20)

This quotient is the standard module of JTLN (n) for j = 0.
Whenver j 6= 0, constraint (iii) leads to K = ⇡p/M where M |j and with a greatest common divisor

p ^ M = 1. The modules encountered so far are thus W
0,q2 = W

0,q�2 , and Wj,e2i⇡p/M , M |j.
On top of these modules, we will also need to consider the case where non-contractible loops are given

a vanishing weight, ensuring, in the cluster formulation, that there exists one cluster propagating along the
cylinder. This is easily accomplished by setting z = ±i, leading to W

0,�1

.

4.4 Exponents

The spectrum of the transfer matrix (or Hamiltonian) describing the connectivities in the geometrical
Q-state Potts model in the relevant modules of the a�ne Temperley-Lieb algebra is well known in the
conformal limit. Setting

H = ��
2LX

i=1

ei (21)

we define the generating function of levels (eigenenergies of H) and lattice momentum P as [10]

Tr e��R(H�N"0)e�i�IP N!1����! Tr qL0�c/24q̄
¯L0�c/24, (22)

Here "
0

is the (non-universal) ground state energy per site in the thermodynamic limit, and we have set
q(q̄) = exp

⇥� 2⇡
N (�R ± i�I)

⇤
with �R,I real and �R > 0. N = 2L is the length of the chain (only even chains

are relevant in our problem). � is a known q dependent constant adjusted in such a way that the sound
velocity of the excitations is equal to one.

The generating function (22) calculated in the modules Wj,e2iK is

Fj,e2iK ⌘ TrWj,e2iK e��R(H�N"0)e�i�IP N!1����! q�c/24q̄�c/24

P (q)P (q̄)

X

e2Z
q

h
e+ K

⇡
,�j q̄

h
e+ K

⇡
,j , (23)

where

P (q) =
1Y

n=1

(1 � qn) = q�1/24⌘(q). (24)

In this equation we have parametrized the Potts model by
p

Q = 2 cos ⇡
m+1

, m 2 [1, 1]. The corresponding
central charge is

c = 1 � 6

m(m + 1)
(25)

and we also use conventions

hrs =
[(m + 1)r � ms]2 � 1

4m(m + 1)
(26)

It is convenient in the following to introduce g = m
m+1

and e
0

= 1

m+1

.
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(iii) setting uN = 1, which allows one to unwind through lines, and

h Explain item (ii) better

The first and second constraints are only relevant in the case j = 0. The first constraint leads to
z2 = q±2. In this case in fact, the a�ne TL module W

0,q2 is reducible, and identifying non-isotopic
diagrams corresponds to the quotient W

0,q2 of dimension

d
0

= dim W
0,q2 =

✓
N

N/2

◆
�

✓
N

N/2 + 1

◆
, (20)

This quotient is the standard module of JTLN (n) for j = 0.
Whenver j 6= 0, constraint (iii) leads to K = ⇡p/M where M |j and with a greatest common divisor

p ^ M = 1. The modules encountered so far are thus W
0,q2 = W

0,q�2 , and Wj,e2i⇡p/M , M |j.
On top of these modules, we will also need to consider the case where non-contractible loops are given

a vanishing weight, ensuring, in the cluster formulation, that there exists one cluster propagating along the
cylinder. This is easily accomplished by setting z = ±i, leading to W

0,�1

.

4.4 Exponents

The spectrum of the transfer matrix (or Hamiltonian) describing the connectivities in the geometrical
Q-state Potts model in the relevant modules of the a�ne Temperley-Lieb algebra is well known in the
conformal limit. Setting

H = ��
2LX

i=1

ei (21)

we define the generating function of levels (eigenenergies of H) and lattice momentum P as [10]

Tr e��R(H�N"0)e�i�IP N!1����! Tr qL0�c/24q̄
¯L0�c/24, (22)

Here "
0

is the (non-universal) ground state energy per site in the thermodynamic limit, and we have set
q(q̄) = exp

⇥� 2⇡
N (�R ± i�I)

⇤
with �R,I real and �R > 0. N = 2L is the length of the chain (only even chains

are relevant in our problem). � is a known q dependent constant adjusted in such a way that the sound
velocity of the excitations is equal to one.

The generating function (22) calculated in the modules Wj,e2iK is

Fj,e2iK ⌘ TrWj,e2iK e��R(H�N"0)e�i�IP N!1����! q�c/24q̄�c/24

P (q)P (q̄)

X

e2Z
q

h
e+ K

⇡
,�j q̄

h
e+ K

⇡
,j , (23)

where

P (q) =
1Y

n=1

(1 � qn) = q�1/24⌘(q). (24)

In this equation we have parametrized the Potts model by
p

Q = 2 cos ⇡
m+1

, m 2 [1, 1]. The corresponding
central charge is

c = 1 � 6

m(m + 1)
(25)

and we also use conventions

hrs =
[(m + 1)r � ms]2 � 1

4m(m + 1)
(26)

It is convenient in the following to introduce g = m
m+1

and e
0

= 1

m+1

.
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Ĉ(↵̂, 0, 0) 6= 0

Pabab

Pabba

Paabb

Paaaa

� ⌘ h
1/2,0

s t u

Paabb S
0

SZ+1/2,2Z SZ+1/2,2Z
Pabab SZ+1/2,2Z SZ+1/2,2Z S

0

Pabba SZ+1/2,2Z S
0

SZ+1/2,2Z

(1)

Pabab / |z
13

z
24

|�4�Gabab(z, z̄), z ⌘ z
12

z
34

z
13

z
24

Gabab(z, z̄) =
X

h,¯h2S

C���h,h̄
C

�h,h̄��F
(s)
h (z)F (s)

¯h (z̄)

1

and



what it means:

x

x

x

x

1

2

3

4

P (1, 2, 3) =
Ch1/2,0,h1/2,0,h1/2,0

|z
12

z
13

z
23

|2h1/2,0

h
1/2,0 =

5

96

Z
Potts

=
X

{�i}

Y

<jk>

eK�(�i,�j), �i = 1, . . . , Q

Z
FK

=
X

C
(eK � 1)BQC

Z
Loops

= (
p
Q)S

X

P
(
p

Q)L

n =
p

Q
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how can we determine S?

our work: a mixture of representation theory and numerics

Let us now insert the OPE in a four-point function of primary fields:
〈

V∆1
(z)V∆2

(0)V∆3
(∞)V∆4

(1)
〉

=
∑

∆∈S

C∆1,∆2,∆|z|
2(∆−∆1−∆2)

×
(〈

V∆(0)V∆3
(∞)V∆4

(1)
〉

+O(z)
)

, (3.12)

=
∑

∆∈S

C∆1,∆2,∆C∆,∆3,∆4
|z|2(∆−∆1−∆2)

(

1 +O(z)
)

. (3.13)

The contributions of descendents factorize into those of left-moving descendents, generated
by the operators Ln<0, and right-moving descendents, generated by L̄n<0. So the last
factor has a holomorphic factorization such that

〈

V∆1
(z)V∆2

(0)V∆3
(∞)V∆4

(1)
〉

=
∑

∆∈S

C∆1,∆2,∆C∆,∆3,∆4
F (s)

∆ (z)F (s)
∆ (z̄) . (3.14)

Definition 3.7 (Conformal block)
The four-point conformal block on the sphere,

F (s)
∆ (z) = z∆−∆1−∆2

(

1 +O(z)
)

, (3.15)

is the normalized contribution of the Verma module V∆ to a four-point function, obtained
by summing over left-moving descendents. Its dependence on c,∆1,∆2,∆3,∆4 are kept
implicit. The label (s) stands for for s-channel, we will soon see what this means.

Conformal blocks are in principle known, as they are universal functions, entirely deter-
mined by conformal symmetry. This is analogous to characters of representations, also
known as zero-point conformal blocks on the torus.

Exercise 3.8 (Computing conformal blocks)

Compute the conformal block F (s)
∆ (z) up to the order O(z), and find

F (s)
∆ (z) = z∆−∆1−∆2

(

1 +
(∆ +∆1 −∆2)(∆+∆4 −∆3)

2∆
z +O(z2)

)

. (3.16)

Show that the first-order term has a pole when the Verma module V∆ has a null vector
at level one. Compute the residue of this pole. Compare the condition that this residue
vanishes with the condition (2.26) that three-point functions involving V⟨1,1⟩ exist.

Our axiom 2.7 on the commutativity of fields implies that the OPE is associative, and
that we can use the OPE of any two fields in a four-point function. In particular, using
the OPE of the first and fourth fields, we obtain

〈

V∆1
(z)V∆2

(0)V∆3
(∞)V∆4

(1)
〉

=
∑

∆∈S

C∆,∆1,∆4
C∆2,∆3,∆F

(t)
∆ (z)F (t)

∆ (z̄) , (3.17)

where F (t)
∆ (z) = (z−1)∆−∆1−∆4

(

1+O(z−1)
)

is a t-channel conformal block. The equality

of our two decompositions (3.14) and (3.17) of the four-point function is called crossing
symmetry, schematically

∑

∆s∈S

C12sCs34

2
s

3

1 4

=
∑

∆t∈S

C23tCt41

2

t

1

3

4

. (3.18)
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The basic strategy

 Study problem on a cylinder

where (�, �̄ are the conformal weights of the primary fields appearing in the operator product expansion
relevant at small z, that is when z

1

! z
2

and z
3

! z
4

: this is called the s-channel. We can of course write

G(z, z̄) =
X

�, ¯�2S

C
�1�2���̄

C
���̄�3�4z

(��h1�h2)z̄
¯

��¯h1�¯h2 [1 + O(z, z̄)] (6)

The key question we want to address in this paper is the set S of values of �, �̄, which we will tackle
in part by a brute force numerical determination of a (very) large number of terms appearing in the right
hand side of (6). Note that the determination of the set S from the knowledge of these terms will only
be fully possible in “generic” cases, where none of the �, �̄ di↵er by integers. Otherwise, there will be
ambiguities, as a term such as � + n, �̄ + n̄ (with n, n̄ integer) may arise from a genuine primary field, or
from a Virasoro descendent of some primary field with weights � + p, �̄ + p̄, p < n or p̄ < n̄.

Our strategy is to study the expansion (6) on the cylinder, where we will be able to use, on the numerical
side, transfer matrix techniques, and, on the analytic side, algebraic results. The four point function on
the cylinder follows from (1) via the conformal map w = L

2⇡ ln z. Using the fact that the fields are primary,
and restricting to i = j = k = l for simplicity, we find

h�(w
1

, w̄
1

)�(w
2

, w̄
2

)�(w
3

, w̄
3

)�(w
4

, w̄
4

)icyl =

✓
2⇡

L

◆
4(h+

¯h) 1
��4 sinh ⇡w13

L sinh ⇡w24
L

��2(h+

¯h)

G(w, w̄) (7)

where now we must set

w =
sinh ⇡w12

L sinh ⇡w34
L

sinh ⇡w13
L sinh ⇡w24

L

(8)

Using (6) we can write this as

h�(w
1

, w̄
1

)�(w
2

, w̄
2

)�(w
3

, w̄
3

)�(w
4

, w̄
4

)icyl =
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4(h+

¯h) 1

|4 sinh ⇡w12
L sinh ⇡w34

L |2(h+

¯h)
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sinh ⇡w12

L sinh ⇡w34
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sinh ⇡w13
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L sinh ⇡w̄24

L

◆ ¯

�

+ O(w, w̄)

#
(9)

In practice we will take the points w
1

, w
2

on a given slice of imaginary time, and w
3

, w
4

on another, distant,
slice along the cylinder. In other words, w

12

and w
34

will be fixed, while w
13

and w
24

will be large and
vary. In this limit, it will then be possible to compare the expansion (9) with the results of transfer matrix
calculations, and identify, in particular, the set S.

Let us now be more precise. We set

w
1

= ia, w
2

= �ia

w
3

= i(a + x) + l, w
4

= i(�a + x) + l (10)

which means the points w
1,2 and w

3,4 are distant from a on the vertical axis, l is the horizontal distance
(imaginary time) between the two groups, and on top of this we have the center of mass of w

3,4 shifted by
x. A short calculation then gives

h�(w
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, w̄
1

)�(w
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⌘�4h

G

 
4ei⇡ sin2

2⇡a
L e�2⇡(l+ix)/L

(1 � e�2⇡(l+ix)/L)2
,
4e�i⇡ sin2

2⇡a
L e�2⇡(l�ix)/L

(1 � e�2⇡(l�ix)/L)2

!
(11)

We can then expand this from (6):
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3

where we have set
⇠ ⌘ e�2⇡(l+ix)/L, ⇠̄ ⌘ e�2⇡(l�ix)/L (13)

The bracket [1 + O(⇠, ⇠̄)] contains now contributions from the conformal blocks and contributions from the
hyperbolic functions in the conformal map.

The expansion (12) is the crucial tool we will use systematically in our analysis below. The general
strategy will be to calculate the four point function numerically on the cylinder, and extract from our data
an expansion in powers of eigenvalues of the transfer matrix. We will then identify terms ⇠�⇠̄

¯

� with powers
of the transfer matrix eigenvalues, and exponentials of the lattice momentum operator. This will give us
access to the set S as well as the coupling constants C

�����̄
. In the following, we will sometimes use the

short hand notation
A

���̄
⌘ C

�����̄
C

���̄��

(14)

We now discuss this in more detail.
Remark: We also see that if we exchange w

1

and w
2

in (9), the leading contributions for a given �, �̄ is
multiplied by (�1)�� ¯

�. Hence primary fields with odd integer spin should contribute an opposite weight.
This means for instance that in the numerical analysis below, we should have:

� � �̄ = even in S part

� � �̄ = odd in A part (15)

For future reference, the definition of the channels is

s z
1

! z
2

t z
1

! z
4

u z
1

! z
3

(16)

Clearly, Paaaa should have the same spectrum (and structure constants) in all channels. Paabb should have
the same spectrum (and structure constants) in the s- and t-channels, while the spectrum should be di↵erent
in the u-channel.

4.2 The numerical algorithm

h To be written...

4.3 The transfer matrix sectors

Contrarily to what is implied in [4], the exponents of percolation are essentially known. They can easily be
associated with “sectors” of the transfer matrix, a fact that is better explained using an algebraic language.
The underlying object of interest here is the a�ne Temperley-Lieb algebra.

The Temperley-Lieb algebra has a long history and is deeply associated with work on the Potts model
[11, 12].

h Jesper, want to write something?

h The important distinction between clusters and lines. Maybe describe both ways to think of TL?

The Temperley-Lieb algebra per se is associated with the Potts model on a strip - ie with open bound-
aries. It is well known how a very similar object is relevant to the description of models on a cylinder - ie
with periodic boundary conditions. All one needs to do is add a last generator “closing” the system, eN ,
and define the labels modulo N so that eN+1

= e
1

, eNe
1

eN = e
1

, etc. This natural generalization however
takes one into a sticky mathematical problem: the corresponding algebra is then infinite dimensional, even
for finite N . In a nutshell, this occurs because of through lines or loops that can wind around the system.
While what must be done with these objects is clear in the Potts model itself, this requires extra information
that is not present in the definition of the “periodicized” Temperley-Lieb algebra. This extra information
takes the mathematical form of “quotients”.
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where (�, �̄ are the conformal weights of the primary fields appearing in the operator product expansion
relevant at small z, that is when z
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The key question we want to address in this paper is the set S of values of �, �̄, which we will tackle
in part by a brute force numerical determination of a (very) large number of terms appearing in the right
hand side of (6). Note that the determination of the set S from the knowledge of these terms will only
be fully possible in “generic” cases, where none of the �, �̄ di↵er by integers. Otherwise, there will be
ambiguities, as a term such as � + n, �̄ + n̄ (with n, n̄ integer) may arise from a genuine primary field, or
from a Virasoro descendent of some primary field with weights � + p, �̄ + p̄, p < n or p̄ < n̄.

Our strategy is to study the expansion (6) on the cylinder, where we will be able to use, on the numerical
side, transfer matrix techniques, and, on the analytic side, algebraic results. The four point function on
the cylinder follows from (1) via the conformal map w = L

2⇡ ln z. Using the fact that the fields are primary,
and restricting to i = j = k = l for simplicity, we find
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In practice we will take the points w
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on a given slice of imaginary time, and w
3
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4

on another, distant,
slice along the cylinder. In other words, w
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and w
34

will be fixed, while w
13

and w
24

will be large and
vary. In this limit, it will then be possible to compare the expansion (9) with the results of transfer matrix
calculations, and identify, in particular, the set S.
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3,4 are distant from a on the vertical axis, l is the horizontal distance
(imaginary time) between the two groups, and on top of this we have the center of mass of w

3,4 shifted by
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where we have set
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The bracket [1 + O(⇠, ⇠̄)] contains now contributions from the conformal blocks and contributions from the
hyperbolic functions in the conformal map.

The expansion (12) is the crucial tool we will use systematically in our analysis below. The general
strategy will be to calculate the four point function numerically on the cylinder, and extract from our data
an expansion in powers of eigenvalues of the transfer matrix. We will then identify terms ⇠�⇠̄

¯

� with powers
of the transfer matrix eigenvalues, and exponentials of the lattice momentum operator. This will give us
access to the set S as well as the coupling constants C
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We now discuss this in more detail.
Remark: We also see that if we exchange w

1

and w
2

in (9), the leading contributions for a given �, �̄ is
multiplied by (�1)�� ¯

�. Hence primary fields with odd integer spin should contribute an opposite weight.
This means for instance that in the numerical analysis below, we should have:

� � �̄ = even in S part

� � �̄ = odd in A part (15)

For future reference, the definition of the channels is
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Clearly, Paaaa should have the same spectrum (and structure constants) in all channels. Paabb should have
the same spectrum (and structure constants) in the s- and t-channels, while the spectrum should be di↵erent
in the u-channel.

4.2 The numerical algorithm

h To be written...

4.3 The transfer matrix sectors

Contrarily to what is implied in [4], the exponents of percolation are essentially known. They can easily be
associated with “sectors” of the transfer matrix, a fact that is better explained using an algebraic language.
The underlying object of interest here is the a�ne Temperley-Lieb algebra.

The Temperley-Lieb algebra has a long history and is deeply associated with work on the Potts model
[11, 12].

h Jesper, want to write something?

h The important distinction between clusters and lines. Maybe describe both ways to think of TL?

The Temperley-Lieb algebra per se is associated with the Potts model on a strip - ie with open bound-
aries. It is well known how a very similar object is relevant to the description of models on a cylinder - ie
with periodic boundary conditions. All one needs to do is add a last generator “closing” the system, eN ,
and define the labels modulo N so that eN+1

= e
1

, eNe
1

eN = e
1

, etc. This natural generalization however
takes one into a sticky mathematical problem: the corresponding algebra is then infinite dimensional, even
for finite N . In a nutshell, this occurs because of through lines or loops that can wind around the system.
While what must be done with these objects is clear in the Potts model itself, this requires extra information
that is not present in the definition of the “periodicized” Temperley-Lieb algebra. This extra information
takes the mathematical form of “quotients”.
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where (�, �̄ are the conformal weights of the primary fields appearing in the operator product expansion
relevant at small z, that is when z
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The key question we want to address in this paper is the set S of values of �, �̄, which we will tackle
in part by a brute force numerical determination of a (very) large number of terms appearing in the right
hand side of (6). Note that the determination of the set S from the knowledge of these terms will only
be fully possible in “generic” cases, where none of the �, �̄ di↵er by integers. Otherwise, there will be
ambiguities, as a term such as � + n, �̄ + n̄ (with n, n̄ integer) may arise from a genuine primary field, or
from a Virasoro descendent of some primary field with weights � + p, �̄ + p̄, p < n or p̄ < n̄.

Our strategy is to study the expansion (6) on the cylinder, where we will be able to use, on the numerical
side, transfer matrix techniques, and, on the analytic side, algebraic results. The four point function on
the cylinder follows from (1) via the conformal map w = L

2⇡ ln z. Using the fact that the fields are primary,
and restricting to i = j = k = l for simplicity, we find

h�(w
1

, w̄
1

)�(w
2

, w̄
2

)�(w
3

, w̄
3

)�(w
4

, w̄
4

)icyl =

✓
2⇡

L

◆
4(h+

¯h) 1
��4 sinh ⇡w13

L sinh ⇡w24
L

��2(h+

¯h)

G(w, w̄) (7)

where now we must set

w =
sinh ⇡w12

L sinh ⇡w34
L

sinh ⇡w13
L sinh ⇡w24

L

(8)

Using (6) we can write this as

h�(w
1

, w̄
1

)�(w
2

, w̄
2

)�(w
3

, w̄
3

)�(w
4

, w̄
4

)icyl =

✓
2⇡

L

◆
4(h+

¯h) 1

|4 sinh ⇡w12
L sinh ⇡w34

L |2(h+

¯h)

X

�, ¯�2S

C
�����̄

C
���̄��

"✓
sinh ⇡w12

L sinh ⇡w34
L

sinh ⇡w13
L sinh ⇡w24

L

◆
�

✓
sinh ⇡w̄12

L sinh ⇡w̄34
L

sinh ⇡w̄13
L sinh ⇡w̄24

L

◆ ¯

�

+ O(w, w̄)

#
(9)

In practice we will take the points w
1

, w
2

on a given slice of imaginary time, and w
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will be large and
vary. In this limit, it will then be possible to compare the expansion (9) with the results of transfer matrix
calculations, and identify, in particular, the set S.

Let us now be more precise. We set

w
1

= ia, w
2

= �ia

w
3

= i(a + x) + l, w
4

= i(�a + x) + l (10)

which means the points w
1,2 and w

3,4 are distant from a on the vertical axis, l is the horizontal distance
(imaginary time) between the two groups, and on top of this we have the center of mass of w

3,4 shifted by
x. A short calculation then gives

h�(w
1

, w̄
1

)�(w
2

, w̄
2

)�(w
3

, w̄
3

)�(w
4

, w̄
4

)icyl =

✓
2⇡

L

◆
4(h+

¯h)

e�8⇡hl/L

⇣
1 � e�2⇡(l+ix)/L

⌘�4h ⇣
1 � e�2⇡(l�ix)/L

⌘�4h

G

 
4ei⇡ sin2

2⇡a
L e�2⇡(l+ix)/L

(1 � e�2⇡(l+ix)/L)2
,
4e�i⇡ sin2

2⇡a
L e�2⇡(l�ix)/L

(1 � e�2⇡(l�ix)/L)2

!
(11)

We can then expand this from (6):

h�(w
1

, w̄
1

)�(w
2

, w̄
2

)�(w
3

, w̄
3

)�(w
4

, w̄
4

)icyl =

✓
2⇡

L

◆
4(h+

¯h) 1

(4 sin2

2⇡a
L )4h

X

�, ¯�2S

C
�����̄

C
���̄��

✓
4 sin2

2⇡a

L

◆
�+

¯

�

(�1)�� ¯

�⇠�⇠̄
¯

�[1 + O(⇠, ⇠̄)] (12)

3

where we have set
⇠ ⌘ e�2⇡(l+ix)/L, ⇠̄ ⌘ e�2⇡(l�ix)/L (13)

The bracket [1 + O(⇠, ⇠̄)] contains now contributions from the conformal blocks and contributions from the
hyperbolic functions in the conformal map.

The expansion (12) is the crucial tool we will use systematically in our analysis below. The general
strategy will be to calculate the four point function numerically on the cylinder, and extract from our data
an expansion in powers of eigenvalues of the transfer matrix. We will then identify terms ⇠�⇠̄
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Clearly, Paaaa should have the same spectrum (and structure constants) in all channels. Paabb should have
the same spectrum (and structure constants) in the s- and t-channels, while the spectrum should be di↵erent
in the u-channel.

4.2 The numerical algorithm

h To be written...

4.3 The transfer matrix sectors

Contrarily to what is implied in [4], the exponents of percolation are essentially known. They can easily be
associated with “sectors” of the transfer matrix, a fact that is better explained using an algebraic language.
The underlying object of interest here is the a�ne Temperley-Lieb algebra.

The Temperley-Lieb algebra has a long history and is deeply associated with work on the Potts model
[11, 12].

h Jesper, want to write something?

h The important distinction between clusters and lines. Maybe describe both ways to think of TL?

The Temperley-Lieb algebra per se is associated with the Potts model on a strip - ie with open bound-
aries. It is well known how a very similar object is relevant to the description of models on a cylinder - ie
with periodic boundary conditions. All one needs to do is add a last generator “closing” the system, eN ,
and define the labels modulo N so that eN+1

= e
1

, eNe
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eN = e
1

, etc. This natural generalization however
takes one into a sticky mathematical problem: the corresponding algebra is then infinite dimensional, even
for finite N . In a nutshell, this occurs because of through lines or loops that can wind around the system.
While what must be done with these objects is clear in the Potts model itself, this requires extra information
that is not present in the definition of the “periodicized” Temperley-Lieb algebra. This extra information
takes the mathematical form of “quotients”.
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the usual contribution from 
transfer matrix eigenvalues :

the amplitude corrected by logarithmic mapping (from plane to cylinder)



 Strategy is brutal:

• calculate the probabilities numerically to arbitrary precision for many  
values of the distance between the two sets of points (using exact enumeration 
and transfer matrix techniques)

• choose L 

• determine for L all possible eigenvalues of the transfer matrix

• invert the system to determine all coefficients of                 for all 
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• determine which critical exponents are associated with them

• extract the amplitudes (estimated for a given L)

• do it for as many L as possible

• extrapolate

�le�iPx

�, P

e2
i

=

p
Qe

i

e
i

e
i±1

e
i

= e
i

[e
i

, e
j

] = 0, |i� j| � 2

e
i

⌘ e
i mod L

z = eiK(z�1

= e�iK

)

e2iKj

= 1, j 6= 0

n
NC

= z + z�1

j = 0

SZ+ 1
4 ,4Z

(2 cos

⇡

8

)

2

= 3.4142

(2 cos

3⇡

8

)

2

= 0.5858

P =

X
C�leiPx

2

• write  



 Strategy is brutal:

• calculate the probabilities numerically to arbitrary precision for many  
values of the distance between the two sets of points (using exact enumeration 
and transfer matrix techniques)

• choose L 

• determine for L all possible eigenvalues of the transfer matrix

• invert the system to determine all coefficients of                 for all 

P (1, 2, 3) =
C

h1/2,0,h1/2,0,h1/2,0

|z
12

z
13

z
23

|2h1/2,0

h
1/2,0

=

5

96

Z
Potts

=

X

{�i}

Y

<jk>

eK�(�i,�j), �
i

= 1, . . . , Q

Z
FK

=

X

C
(eK � 1)

BQC

Z
Loops

= (

p
Q)

S

X

P
(

p
Q)

L

n =

p
Q

ˆC(↵̂
1

, ↵̂
2

, 0) 6= 0

ˆC(↵̂, 0, 0) 6= 0

P
abab

P
abba

P
aabb

P
aaaa

� ⌘ h
1/2,0

s t u

P
aabb

S
0

SZ+1/2,2Z SZ+1/2,2Z
P
abab

SZ+1/2,2Z SZ+1/2,2Z S
0

P
abba

SZ+1/2,2Z S
0

SZ+1/2,2Z

(1)

P
abab

/ |z
13

z
24

|�4�G
abab

(z, z̄), z ⌘ z
12

z
34

z
13

z
24

G
abab

(z, z̄) =
X

h,

¯

h2S

C
���h,h̄

C
�h,h̄��

F (s)

h

(z)F (s)

¯

h

(z̄)

G
abab

(z, z̄) ⇡ |z|�4�

X

h,

¯

h2S

C
���h,h̄

C
�h,h̄�

zhz̄
¯

h

(1 +O(z, z̄))

P
abab

/
X

h,

¯

h2S

C
���h,h̄

C
�h,h̄�

✓
4 sin

2

2⇡a

L

◆
h+

¯

h

(�1)

h�¯

h⇠h ¯⇠
¯

h

(1 +O(⇠, ¯⇠))

� = exp

h
�2

⇡

L
(h+

¯h
i

P =

2⇡

L
(h� ¯h) 2 Z

�le�iPx

1

P (1, 2, 3) =
C

h1/2,0,h1/2,0,h1/2,0

|z
12

z
13

z
23

|2h1/2,0

h
1/2,0

=

5

96

Z
Potts

=

X

{�i}

Y

<jk>

eK�(�i,�j), �
i

= 1, . . . , Q

Z
FK

=

X

C
(eK � 1)

BQC

Z
Loops

= (

p
Q)

S

X

P
(

p
Q)

L

n =

p
Q

ˆC(↵̂
1

, ↵̂
2

, 0) 6= 0

ˆC(↵̂, 0, 0) 6= 0

P
abab

P
abba

P
aabb

P
aaaa

� ⌘ h
1/2,0

s t u

P
aabb

S
0

SZ+1/2,2Z SZ+1/2,2Z
P
abab

SZ+1/2,2Z SZ+1/2,2Z S
0

P
abba

SZ+1/2,2Z S
0

SZ+1/2,2Z

(1)

P
abab

/ |z
13

z
24

|�4�G
abab

(z, z̄), z ⌘ z
12

z
34

z
13

z
24

G
abab

(z, z̄) =
X

h,

¯

h2S

C
���h,h̄

C
�h,h̄��

F (s)

h

(z)F (s)

¯

h

(z̄)

G
abab

(z, z̄) ⇡ |z|�4�

X

h,

¯

h2S

C
���h,h̄

C
�h,h̄�

zhz̄
¯

h

(1 +O(z, z̄))

P
abab

/
X

h,

¯

h2S

C
���h,h̄

C
�h,h̄�

✓
4 sin

2

2⇡a

L

◆
h+

¯

h

(�1)

h�¯

h⇠h ¯⇠
¯

h

(1 +O(⇠, ¯⇠))

� = exp

h
�2

⇡

L
(h+

¯h
i

P =

2⇡

L
(h� ¯h) 2 Z

�le�iPx

�, P

1

• determine which critical exponents are associated with them

• extract the amplitudes (estimated for a given L)

• do it for as many L as possible

• extrapolate

�le�iPx

�, P

e2
i

=

p
Qe

i

e
i

e
i±1

e
i

= e
i

[e
i

, e
j

] = 0, |i� j| � 2

e
i

⌘ e
i mod L

z = eiK(z�1

= e�iK

)

e2iKj

= 1, j 6= 0

n
NC

= z + z�1

j = 0

SZ+ 1
4 ,4Z

(2 cos

⇡

8

)

2

= 3.4142

(2 cos

3⇡

8

)

2

= 0.5858

P =

X
C�leiPx

2

• write  

a crucial step whose answer is mostly algebraic
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the basic object is the  
affine Temperley Lieb algebra
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1 i i+ 1

. . .

N

Figure 2. The diagrammatic representation of ei.

=

Figure 3. The diagrammatic version of the relation eiei+1

ei = ei.

Beijing, 2011 where some of our results (those on the direct limit of finite TL categories
and the relation to the Virasoro algebra) were presented.

2. Fusion in TL-mod categories

The (finite) Temperley–Lieb (TL) algebra TLN(m) is an associative algebra over C
generated by unit 1 and ej, with 1  j  N � 1, satisfying the defining relations

e2j = mej,

ejej±1

ej = ej,(2.1)

ejek = ekej (j 6= k, k ± 1).

This algebra has a well-known faithful diagrammatical representation in terms of non-
crossing pairings on a rectangle with N points on each of the opposite sides. Multipli-
cation is performed by placing two rectangles on top of each other, and replacing any
closed loops by a factor m. While the identity corresponds to the diagram in which each
point is directly connected to the point above it, the generator ei is represented by the
diagram, see Fig. 2, where the points i on both sides of the rectangle are connected to the
point i+1 on the same side, all other points being connected like in the identity diagram.
The defining relations are easily checked by using isotopy ambient on the boundary of
the rectangle, see Fig. 3.
We will often omit mentioning the parameter m and write simply TLN as the replace-

ment for TLN(m).

2.1. Towers of the TL algebras. The important ingredient of our constructions below
are towers of the TL algebras. In terms of the diagrams, we can naturally construct two
kinds of towers.

• The first one is standard, it uses the standard embeddings of the algebras:

(2.2) TLN
◆����! TLN+1
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with the well known 
graphical representation

L

for instance the second relation  
becomes

All finite dimensional modules are classified [Martin, Saleur; Graham Lehrer]

(Note: because of the non locality of the problem it is not totally obvious a priori  that this algebra is all 
that’s needed. But it is true. The reason is that the algebra encompasses all spin correlations for all Q 
integer. The decomposition of the transfer matrix on standard modules of TL is known for all Q)

(recall loops are cluster boundaries)



acquired by such a line when it winds clockwise (counterclockwise) around the cylinder. 

To define these quotients more precisely, it is useful to also introduce a translation generator u that
shifts the label of the ei generators, giving rise to the following relations, with integer indices considered
modulo N (that is, i 2 ZN ):

e2

i = nei (17a)

eiei±1

ei = ei (17b)

[ei, ej ] = 0 (|i � j| � 2) (17c)

ueiu
�1 = ei+1

(17d)

u2eN�1

= e
1

. . . eN�1

. (17e)

The translation operator has the diagrammatic representation

u = . . . .

Note that the last relation is easily understood in terms of diagrams, for example for N = 4,

e
1

e
2

e
3

= = = = u2e
3

.

Note also that uN is central. The resulting algebra is called the a�ne Temperley–Lieb algebra Ta
N (n).

While Ta
N (n) is infinite dimensional, it is easy to define the finite dimensional modules which are relevant

to us: we simply decide that whenever 2j through lines wind counterclockwise around the annulus l times,
we can unwind them at the price of a factor e2ijlK ; similarly, for clockwise winding, the phase will be
e�i2jlK [13]. This unwinding means more precisely that we equate the words in the algebra corresponding
to the winding configurations with a numerical factor (the phase) times the related words without winding.
This operation is known to give rise to a generically irreducible module over Ta

N (n), which we denote by
Wj,z2

=e

2iK and call the standard modules. (We are actually going to use the subalgebra in Ta
N generated

by the ei’s and by u2, so our notation refers to z2 rather than z.) A key point is that, in one of these
modules, one has the identity

uN = z2j (18)

The dimensions of the standard modules Wj,e2iK are then given by

d̂j =

✓
N

N/2 + j

◆
, j > 0 . (19)

Note that the dimensions do not depend on K, although the representations with di↵erent eiK are not
isomorphic.

The case j = 0 is a bit special. There is no pseudomomentum, but representations are still characterized
by another parameter, related with the weight given to non contractible loops. Parametrizing this weight
as z + z�1, the corresponding standard module of Ta

N (n) is denoted W
0,z2 and has dimension

�
N

N/2

�
. These

modules are irreducible for generic z. As in the case j > 0, we indicate only the z2 value, though it does
not mean that the two standard modules with ±z are isomorphic. We will indicate the sign of z when it is
necessary.

While it is useful to have knowledge of the finite dimensional modules of Ta
N , things are simpler in the

Potts model (for which of course we must set n =
p

Q). Indeed, the algebra we are mostly interested in is
a quotient often called the Jones-Temperley-Lieb algebra JTLN (n) [?] obtained by:

(i) replacing non contractible loops by the same weight n =
p

Q as for the contractible ones,

5

Finite dimensional modules are the characterized by 2j through lines and the phase 
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non contractible loops get a fugacity 

The modules necessary to reproduce the probabilities are the same as those appearing in the torus partition function  
of the Potts model  [DiFrancesco, Saleur, Zuber]

(ii) identifying non-isotopic (in the annulus) diagrams connecting the same sites.

(iii) setting uN = 1, which allows one to unwind through lines, and

h Explain item (ii) better

The first and second constraints are only relevant in the case j = 0. The first constraint leads to
z2 = q±2. In this case in fact, the a�ne TL module W

0,q2 is reducible, and identifying non-isotopic
diagrams corresponds to the quotient W

0,q2 of dimension

d
0

= dim W
0,q2 =

✓
N

N/2

◆
�

✓
N

N/2 + 1

◆
, (20)

This quotient is the standard module of JTLN (n) for j = 0.
Whenver j 6= 0, constraint (iii) leads to K = ⇡p/M where M |j and with a greatest common divisor

p ^ M = 1. The modules encountered so far are thus W
0,q2 = W

0,q�2 , and Wj,e2i⇡p/M , M |j.
On top of these modules, we will also need to consider the case where non-contractible loops are given

a vanishing weight, ensuring, in the cluster formulation, that there exists one cluster propagating along the
cylinder. This is easily accomplished by setting z = ±i, leading to W

0,�1

.

4.4 Exponents

The spectrum of the transfer matrix (or Hamiltonian) describing the connectivities in the geometrical
Q-state Potts model in the relevant modules of the a�ne Temperley-Lieb algebra is well known in the
conformal limit. Setting

H = ��
2LX

i=1

ei (21)

we define the generating function of levels (eigenenergies of H) and lattice momentum P as [10]

Tr e��R(H�N"0)e�i�IP N!1����! Tr qL0�c/24q̄
¯L0�c/24, (22)

Here "
0

is the (non-universal) ground state energy per site in the thermodynamic limit, and we have set
q(q̄) = exp

⇥� 2⇡
N (�R ± i�I)

⇤
with �R,I real and �R > 0. N = 2L is the length of the chain (only even chains

are relevant in our problem). � is a known q dependent constant adjusted in such a way that the sound
velocity of the excitations is equal to one.

The generating function (22) calculated in the modules Wj,e2iK is
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where

P (q) =
1Y

n=1

(1 � qn) = q�1/24⌘(q). (24)

In this equation we have parametrized the Potts model by
p

Q = 2 cos ⇡
m+1

, m 2 [1, 1]. The corresponding
central charge is

c = 1 � 6

m(m + 1)
(25)

and we also use conventions

hrs =
[(m + 1)r � ms]2 � 1

4m(m + 1)
(26)

It is convenient in the following to introduce g = m
m+1

and e
0

= 1

m+1

.
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Note: to compare with [4] one must set in their equation (1.1) �2 = m
m+1

(so 1

2

 �2  1), q = Q.
Moreover, the conventions used in their paper for the exponents are switched with respect to ours. They
call �sr what we call hrs (or �rs).

Restricting now to the cases K = ⇡p/M , M |j gives

Fj,e2i⇡p/M =
q�c/24q̄�c/24

P (q)P (q̄)

X

e2Z
q

he+ p
M

,�j q̄
he+ p

M
,j , M |j, j integer (27)

h Case j=1? On top of this we also have to consider the generating function of levels in W
0,�1

, which reads

F
0,�1

=
q�c/24q̄�c/24

P (q)P (q̄)

X

e2Z
qhe+1/2,0 q̄he+1/2,0 , (28)

and the generating function in W
0,q2 . The twist eiK = q corresponds in our notation to K

⇡ = e
0

, so we
have first

F
0,q2 =

q�c/24q̄�c/24

P (q)P (q̄)

X

e2Z
qhe+e0,0 q̄he+e0,0 , (29)

The subtraction necessary to obtain the module W
0,q2 leads to the expression for the generating function

of the corresponding levels:

F̄
0,q2 =

q�c/24q̄�c/24

P (q)P (q̄)

"
X

e2Z
qhe+e0,0 q̄he+e0,0 �

X

e2Z
qhe,1 q̄he,�1

#
(30)

The subtraction can actually be implemented term by term. Introducing the characters of the so-called
Kac modules - Verma modules where a single singular vector has been removed

Kr1 = q�c/24

qhr1 � qhr,�1

P (q)
= q�c/24qhr1

1 � qr

P (q)
(31)

we have

F̄
0,q2 =

1X

r=1

Kr1(q)Kr1(q̄) (32)

It is natural to expect that the exponents encoded in (27,73,32) are the only ones contributing to the
s-channel of the four point functions, a fact we will confirm below. We note that for generic values of Q or
q (ie, m irrational), there are no coincidences of exponents in the di↵erent sectors (generating functions)
(this is also true on the lattice, where there are no coincidences of eigenvalues). Moreover, in a given sector,
no two exponents di↵er by integers.

As should be clear from the foregoing discussion of the Temperley-Lieb algebra, the sectors with j 6= 0
integer correspond to the propagation of 2j cluster boundaries. The case j = 1, which would correspond
to the propagation of a single cluster boundary does not appear below. This is expected: while having
j > 1 clusters propagate implies that 2j > 2 cluster boundaries propagate, it is perfectly possible to have
a single cluster that propagates without having a boundary present all along the cylinder: the cluster is
indeed highly likely to have pieces wrapping around the cylinder. This sector is selected instead by setting
j = 0 and giving a weight z + z�1 = 0 to non-contractible loops as discussed earlier.

5 Results

5.1 Checks

Our approach, being based on properties of the lattice model, requires a careful control of the continuum
limit. There are several aspects to this. The most obvious one is that, since we are studying four-point
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s-channel of the four point functions, a fact we will confirm below. We note that for generic values of Q or
q (ie, m irrational), there are no coincidences of exponents in the di↵erent sectors (generating functions)
(this is also true on the lattice, where there are no coincidences of eigenvalues). Moreover, in a given sector,
no two exponents di↵er by integers.

As should be clear from the foregoing discussion of the Temperley-Lieb algebra, the sectors with j 6= 0
integer correspond to the propagation of 2j cluster boundaries. The case j = 1, which would correspond
to the propagation of a single cluster boundary does not appear below. This is expected: while having
j > 1 clusters propagate implies that 2j > 2 cluster boundaries propagate, it is perfectly possible to have
a single cluster that propagates without having a boundary present all along the cylinder: the cluster is
indeed highly likely to have pieces wrapping around the cylinder. This sector is selected instead by setting
j = 0 and giving a weight z + z�1 = 0 to non-contractible loops as discussed earlier.

5 Results

5.1 Checks

Our approach, being based on properties of the lattice model, requires a careful control of the continuum
limit. There are several aspects to this. The most obvious one is that, since we are studying four-point

7

(ii) identifying non-isotopic (in the annulus) diagrams connecting the same sites.

(iii) setting uN = 1, which allows one to unwind through lines, and

h Explain item (ii) better

The first and second constraints are only relevant in the case j = 0. The first constraint leads to
z2 = q±2. In this case in fact, the a�ne TL module W

0,q2 is reducible, and identifying non-isotopic
diagrams corresponds to the quotient W

0,q2 of dimension

d
0

= dim W
0,q2 =

✓
N

N/2

◆
�

✓
N

N/2 + 1

◆
, (20)

This quotient is the standard module of JTLN (n) for j = 0.
Whenver j 6= 0, constraint (iii) leads to K = ⇡p/M where M |j and with a greatest common divisor

p ^ M = 1. The modules encountered so far are thus W
0,q2 = W

0,q�2 , and Wj,e2i⇡p/M , M |j.
On top of these modules, we will also need to consider the case where non-contractible loops are given

a vanishing weight, ensuring, in the cluster formulation, that there exists one cluster propagating along the
cylinder. This is easily accomplished by setting z = ±i, leading to W

0,�1

.

4.4 Exponents

The spectrum of the transfer matrix (or Hamiltonian) describing the connectivities in the geometrical
Q-state Potts model in the relevant modules of the a�ne Temperley-Lieb algebra is well known in the
conformal limit. Setting

H = ��
2LX

i=1

ei (21)

we define the generating function of levels (eigenenergies of H) and lattice momentum P as [10]

Tr e��R(H�N"0)e�i�IP N!1����! Tr qL0�c/24q̄
¯L0�c/24, (22)

Here "
0

is the (non-universal) ground state energy per site in the thermodynamic limit, and we have set
q(q̄) = exp

⇥� 2⇡
N (�R ± i�I)

⇤
with �R,I real and �R > 0. N = 2L is the length of the chain (only even chains

are relevant in our problem). � is a known q dependent constant adjusted in such a way that the sound
velocity of the excitations is equal to one.

The generating function (22) calculated in the modules Wj,e2iK is

Fj,e2iK ⌘ TrWj,e2iK e��R(H�N"0)e�i�IP N!1����! q�c/24q̄�c/24

P (q)P (q̄)

X

e2Z
q

h
e+ K

⇡
,�j q̄

h
e+ K

⇡
,j , (23)

where

P (q) =
1Y

n=1

(1 � qn) = q�1/24⌘(q). (24)

In this equation we have parametrized the Potts model by
p

Q = 2 cos ⇡
m+1

, m 2 [1, 1]. The corresponding
central charge is

c = 1 � 6

m(m + 1)
(25)

and we also use conventions

hrs =
[(m + 1)r � ms]2 � 1

4m(m + 1)
(26)

It is convenient in the following to introduce g = m
m+1

and e
0

= 1

m+1

.
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Finally, observe that the Kac parametrization

hrs =
[(m + 1)r � ms]2 � 1

4m(m + 1)
(136)

becomes, in the limit m ! 1, hrs = (r�s)2

4

. The exponents appearing in the various Ashkin-Teller
correlators are thus in agreement with the spectra conjectured in [4]

G : SZ,2Z,

R
1

: SZ+

1
2 ,2Z,

R
2

: SZ,2Z
R

3

: SZ+

1
2 ,2Z (137)

B.5 The case Q = 2

In the paper [3] relations are explored between the correlation functions of spins and the geometrical objects.
Taking four points, they find the results (their eqs. (19) to (22)):

G↵↵↵↵ = (Q � 1)(Q2 � 3Q + 3)Paaaa + (Q � 1)2(Paabb + Pabba + Pabab)

G↵↵�� = (2Q � 3)Paaaa + (Q � 1)2Paabb + Pabba + Pabab

G↵��↵ = (2Q � 3)Paaaa + Paabb + (Q � 1)2Pabba + Pabab

G↵�↵� = (2Q � 3)Paaaa + Paabb + Pabba + (Q � 1)2Pabab (138)

One can deduce from these relations for instance that

G↵↵↵↵ � G↵↵�� = Q(Q � 2)2

P

1

+
1

Q � 2
(P

7

+ P
8

)

�
(139)

h The simplification in the spectrum of the rhs must mean something for the lsh, but I don’t know what at the

moment. Not clear where we want to put our observations about ‘simplified spectra’

If we put ourselves at Q = 2 (Ising model) we find that

G↵↵↵↵ = Paaaa + Paabb + Pabba + Pabab (140)

(we also observe that all the other combinations reduce to this one for this particular value of Q). On the
other hand, recall that

G↵↵↵↵ = h
4Y

i=1

(Q��i,↵ � 1)i (141)

For Q = 2, Q��i,↵ � 1 = ±1 coincides with the Ising spins, so this four point function is just the four point
function of the spin operator in the Ising model. The latter is well known:

h����i =
1

2

����
z
13

z
24

z
12

z
23

z
34

z
41

����
1/4 ���1 +

p
1 � z

�� +
��1 � p

1 � z
���

= |z
13

|�1/4|z
24

|�1/4

1

|z(1 � z)|1/4

���1 +
p

1 � z
�� +

��1 � p
1 � z

��� (142)

together with C��✏ = 1

2

(here ✏ is the energy operator). It involves two conformal blocks, corresponding to
the fusion channels �� ⇠ 1 and �� ⇠ ✏. The expansion of the function G gives then

|z|1/4G(z, z̄) = 1 +
1

4
z1/2z̄1/2 +

1

16
(z1/2z̄3/2 + z3/2z̄1/2) +

1

64
z3/2z̄3/2 +

1

64
(z2 + z̄2) + . . . (143)

The normalized correlation function on the lattice should then be

1 + s2⇠1/2⇠̄1/2 + (s2 � s4)⇠1/2(⇠̄3/2 + ⇠3/2⇠̄1/2) +
s4

4
(⇠2 + ⇠̄2) + (s2 � 2s4 + s6)⇠3/2⇠̄3/2 + . . . (144)
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 Focus on 

-

in the s-channel. We find in fact 

where

he+e0,0 =
[(m + 1)(e + 1) � 1]2 � 1

4m(m + 1)
(68)

For percolation we get

he+e0,0 =
(3e + 1)(e + 1)

8
(69)

For Q = 0 we get he+e0,0 = e(e+1)

2

and for Q = 4 we get he+e0,0 = (e+1)

2

4

.

5.5 Summary

We can now summarize our spectras in the s-channel

s t u

Paaaa(P
0

) SZ+1/2,0 [ SZ+

p
N ,2n; n > 0, 2np/N even ? ?

Paabb(P1

) SZ+e0,0 [ SZ+1/2,0 [ SZ+

p
N ,2n; n > 0, 2np/N even ? ?

Pabab/abba(P
2/3

) SZ+

p
N ,2n; n > 0, 2np/N integer ? ?

(70)

Note that these are the generic results, ie the results valid for m irrational. Some contributions vanish
for special values of Q, such as Q = 0, Q = 2 and Q = 4.

6 Comparison with Ribault et al.

The simplest of all is to consider the quantity P
2

� P
3

in [4] (that is, P
7

� P
8

for us). Indeed, from the
general formula in that reference

R� = �(P
0

+ µP�) (71)

we see that R
2

� R
3

= �µ(P
2

� P
3

). The spectrum in the s-channel of P
2

� P
3

according to our analysis
is made of the fields (he+p/N,2n; he+p/N,�2n), e 2 Z with the condition that 2pn/N is an odd integer. Note
that all these fields have h � h̄ odd. In [4] meanwhile we find a spectrum included in SZ+1/2,2Z (after
switching indices to make conventions compatible), and most likely restricted to odd spin h � h̄.

h What are the first primary fields occurring in P2�P3 in [4] together with their coupling constants, for

some ‘generic’ values of Q? Can we compare with our measurements?

7 Comparison with Dotsenko

In [?] a four point function of spin operators is proposed in the percolation case Q = 1. It is not clear how
this function is related to the geometrical objects we have studied in this paper. We note it involves the
field with dimension h

0,2 = 5

8

in the s-channel.

8 Back to percolation

We conclude our study by now focussing on the case of percolation (Q = 1), which is the benchmark
discussed in most detail in [4]. This case is more complicated than the generic case from the point of view
of the lattice algebraic analysis, as many degeneracies now occur (like for Q = 2).

h Maybe numerical values for the first amplitudes?

9 The case q = ei⇡/8

In this case, we have the following structure for the module W
2,�1

. The presence of submodules W
4,i, W4,�i

(in particular) indicates that excited fields in W
2,�1

(a module with two propagating clusters) mix with fields
in W

4,i, W4,�i within the module involving four propagating clusters. We have directly checked in small
sizes that two dimensional Jordan cells were present for the lowest levels corresponding to (h

1/4,4, h1/4,�4

).
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an odd integer. 

�le�iPx

�, P

e2
i

=

p
Qe

i

e
i

e
i±1

e
i

= e
i

[e
i

, e
j

] = 0, |i� j| � 2

e
i

⌘ e
i mod L

z = eiK(z�1

= e�iK

)

e2iKj

= 1, j 6= 0

n
NC

= z + z�1

j = 0

SZ+ 1
4 ,4Z

2

Finally, observe that the Kac parametrization

hrs =
[(m + 1)r � ms]2 � 1

4m(m + 1)
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1
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+
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8
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h The simplification in the spectrum of the rhs must mean something for the lsh, but I don’t know what at the

moment. Not clear where we want to put our observations about ‘simplified spectra’

If we put ourselves at Q = 2 (Ising model) we find that

G↵↵↵↵ = Paaaa + Paabb + Pabba + Pabab (140)

(we also observe that all the other combinations reduce to this one for this particular value of Q). On the
other hand, recall that

G↵↵↵↵ = h
4Y

i=1

(Q��i,↵ � 1)i (141)

For Q = 2, Q��i,↵ � 1 = ±1 coincides with the Ising spins, so this four point function is just the four point
function of the spin operator in the Ising model. The latter is well known:
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2
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z
13

z
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z
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23
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����
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p
1 � z
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���
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24
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together with C��✏ = 1

2

(here ✏ is the energy operator). It involves two conformal blocks, corresponding to
the fusion channels �� ⇠ 1 and �� ⇠ ✏. The expansion of the function G gives then

|z|1/4G(z, z̄) = 1 +
1

4
z1/2z̄1/2 +

1

16
(z1/2z̄3/2 + z3/2z̄1/2) +

1

64
z3/2z̄3/2 +

1

64
(z2 + z̄2) + . . . (143)

The normalized correlation function on the lattice should then be

1 + s2⇠1/2⇠̄1/2 + (s2 � s4)⇠1/2(⇠̄3/2 + ⇠3/2⇠̄1/2) +
s4

4
(⇠2 + ⇠̄2) + (s2 � 2s4 + s6)⇠3/2⇠̄3/2 + . . . (144)
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 Amplitude ratios as of today (extraordinarily time consuming calculation)

Clearly, our set contains SZ,2Z and SZ+1/2,2Z. But it contains many more exponents, corresponding to
rational values of the first label with higher denominators, such as those with first label e + 1/4. We have
coming from our new sectors

(h
1/4,�4

, h
1/4,4) =

✓
(15m � 1)2 � 16

64m(m + 1)
+ 1,

(15m � 1)2 � 16

64m(m + 1)

◆

(44)

h Part below will be moved to appendix in part, or suppressed. It is a useful tool for now.

Take now Q = 1/2 so m is irrationnal. We find then

(h
1/2,�2

, h
1/2,2) = (1.156405, 0.156405)

(h
3/2,�2

, h
3/2,2) = (2.9638, �0.03062)

(h
1/4,�4

, h
1/4,4) = (2.92527, 1.9257) (45)

We observe that the field with (h
1/2,�2

+ 2, h
1/2,2) has total dimension larger than (h

3/2,�2

, h
3/2,2). There-

fore, at momentum 3, the field (h
3/2,�2

, h
3/2,2) will be the first contribution, and so will be (h

1/2,�2

, h
12,2)

at momentum one. It is therefore very easy to identify the corresponding contributions to the four point
function:

Paabb � Pabba / (zz̄)�2h1/2,0

⇣
A

�h1/2,�2,h1/2,2
zh1/2,�2 z̄h1/2,2 + A

�h3/2,�2,h3/2,2
zh3/2,�2 z̄h3/2,2 + . . .

A
�h1/4,�4,h1/4,4

zh1/4,�4 z̄h1/4,4 + . . .
⌘

(46)

Since m is irrational, there is no mixing in the conformal mapping, and we have

Paabb � Pabba / A
�h1/2,�2,h1/2,2

✓
4 sin2

2⇡a

L

◆h1/2,�2+h1/2,2

⇠h1/2,�2 ⇠̄h1/2,2 + . . .

+A
�h3/2,�2,h3/2,2

✓
4 sin2

2⇡a

L

◆h3/2,�2+h3/2,2

⇠h3/2,�2 ⇠̄h3/2,2 + . . .

+A
�h1/4,�4,h1/4,4

✓
4 sin2

2⇡a

L

◆h1/4,�4+h1/4,4

⇠h1/4,�4 ⇠̄h1/4,4 + . . . (47)

For L = 5 and 2a = 2 we find the amplitudes 0.18828 and 0.00291 1st and 21st eigenvalues respectively).
h L = 7? This gives the ratio estimate

A
�h1/4,�4,h1/4,4

A
�h1/2,�2,h1/2,2

= .163 10�3, L = 5

=??, L = 7 (48)

Take now Q = 3

2

(h
1/2,�2

, h
1/2,2) = (1.268170.268174, )

(h
3/2,�2

, h
3/2,2) = (2.972613, �0.0273871)

(h
1/4,�4

, h
1/4,4) = (3.33419, 2.33419) (49)

The first exponent correspond to the leading eigenvalue in F
2,�1

and the second to the leading eigenvalue
in F

4,i. For L = 5 and 2a = 2, we find the corresponding amplitudes 0.2306, �0.00033 (1st and 28th
eigenvalues) and for L = 7 and 2a = 3 we find 0.2205, �0.00072. This gives the ratio estimates

A
�h1/4,�4,h1/4,4

A
�h1/2,�2,h1/2,2

= �.7047410�5, L = 5

= �1.310610�5, L = 7 (50)
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 A technical note: the convergence of the amplitudes is little explored.  An example:

Finally, observe that the Kac parametrization

hrs =
[(m + 1)r � ms]2 � 1

4m(m + 1)
(136)

becomes, in the limit m ! 1, hrs = (r�s)2

4

. The exponents appearing in the various Ashkin-Teller
correlators are thus in agreement with the spectra conjectured in [4]
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B.5 The case Q = 2

In the paper [3] relations are explored between the correlation functions of spins and the geometrical objects.
Taking four points, they find the results (their eqs. (19) to (22)):

G↵↵↵↵ = (Q � 1)(Q2 � 3Q + 3)Paaaa + (Q � 1)2(Paabb + Pabba + Pabab)

G↵↵�� = (2Q � 3)Paaaa + (Q � 1)2Paabb + Pabba + Pabab

G↵��↵ = (2Q � 3)Paaaa + Paabb + (Q � 1)2Pabba + Pabab

G↵�↵� = (2Q � 3)Paaaa + Paabb + Pabba + (Q � 1)2Pabab (138)

One can deduce from these relations for instance that

G↵↵↵↵ � G↵↵�� = Q(Q � 2)2
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h The simplification in the spectrum of the rhs must mean something for the lsh, but I don’t know what at the

moment. Not clear where we want to put our observations about ‘simplified spectra’

If we put ourselves at Q = 2 (Ising model) we find that

G↵↵↵↵ = Paaaa + Paabb + Pabba + Pabab (140)

(we also observe that all the other combinations reduce to this one for this particular value of Q). On the
other hand, recall that

G↵↵↵↵ = h
4Y

i=1

(Q��i,↵ � 1)i (141)

For Q = 2, Q��i,↵ � 1 = ±1 coincides with the Ising spins, so this four point function is just the four point
function of the spin operator in the Ising model. The latter is well known:
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together with C��✏ = 1
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(here ✏ is the energy operator). It involves two conformal blocks, corresponding to
the fusion channels �� ⇠ 1 and �� ⇠ ✏. The expansion of the function G gives then
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The normalized correlation function on the lattice should then be

1 + s2⇠1/2⇠̄1/2 + (s2 � s4)⇠1/2(⇠̄3/2 + ⇠3/2⇠̄1/2) +
s4

4
(⇠2 + ⇠̄2) + (s2 � 2s4 + s6)⇠3/2⇠̄3/2 + . . . (144)
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For Q=2

where is our usual 4 point spin correlator

Expansion in the s-channel:
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vs1/L for a=L/2
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Conclusions

 “Experimental” analysis of correlators in non-unitary CFTs seems the best way to make progress
Many question can be explored, many checks performed

 The algebraic framework allows on to predict some of the structure of the coupling 
constants: eg the poles seen earlier

 In principle knowing the spectrum we could determine the full correlators by bootstrap.
But:

•  the spectrum is extremely rich with exponents close to each other

• the spectrum involves many degenerate fields, even for Q generic. The naive 
treatment of Zamolodchikov’s conformal blocks at these values of   does not 
seem to be enough

 It looks like the nice prediction of [Picco,Ribault, Santachiara] is not correct.

work in progress

∆

 Can we use any of the form-factors/QISM formalism here?
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Thank you and happy birthday Jean Michel


