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AdS/CFT integrability  
(Integrability in Gauge and String Theory)

Integrability is relevant to the study of four-dimensional gauge theories: 

    - high energy QCD  [Lipatov; Faddeev, Korchemsky, 93-95 ] 
    - supersymmetric large N theories  [Minahan, Zarembo, 02]

One can learn a lot about the string duals of the gauge theories, also integrable 
[Bena, Polchinski, Roiban, 02]

Integrability is the unique non-perturbative tool giving access to the AdS/CFT  
correspondence [Maldacena; Polyakov; Witten, ~98]  at arbitrary coupling

from spin chains to strings

…



Integrability data in planar N = 4 SYM

Gauge invariant operators (traces over the gauge group SU(N)) in planar N=4 SYM theory are  
mapped to states of a periodic integrable spin chain/field theory with psu(2,2|4) symmetry

[Minahan, Zarembo, 02]
[Beisert, Staudacher, 03, …]
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Excitations (magnons) in centrally extended psu(2|2) x psu(2|2) : [Beisert, 05-06]

Parametrised in terms of a rapidity variable with a square root branch cut
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Energy and momentum:
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Integrability data in planar N = 4 SYM

Usual rapidity representation for relativistic integrable field theories:
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there are di↵erent regimes in the complex x-plane. Since the integration contours for the

rapidities z are situated on the real axis in the mirror dynamics, it is enough to analyse the

strong coupling limit in this regime [32]. The near-flat-space regime, where u is situated

close to the singularities x(u) = ±1 is not relevant for this case, as we are concerned with

semiclassical strings. We have mainly to check the mirror giant magnon regime |x(u)| > 1

and the mirror BMN regime |x(u)| = 110. The integrals over mirror particles contain the

factor

e�Ea(u)`B ⇠ 1

x2`B
, |x(u)| > 1 (5.6)

which strongly suppresses the contribution of the mirror giant magnon particles for large

values of the bridge length `B. We are therefore going to concentrate on the BMN mirror

regime |x| = 1.

-2g' 2g'

x       cut[+a]

physical regime

mirror regime

[-a]x       cut

Figure 5.8: The rule for analytic continuation from the BMN mirror regime to BMN physical

regime at strong coupling, when the real axis is pinched between the branch cuts of the

Zhukovsky variables x+ and x

�.

As illustrated in 5.8, the contributions from the mirror BMN regime at strong coupling

can be determined by first taking the strong-coupling limit of the relevant quantities in the

physical regime and then analytically continuing them to the lower half of the unit circle

|x| = 1. This simple rule should be applied with care for the bound-state quantities, which

may have an array of branch cuts. In this case, the passage to the mirror regime of an object

associated to a bound state of size a is done by substituting x[+a](u) by 1/x[+a](u), that is

by analytically continuing u through the branch cut of the Zhukovsky variable x[+a](u) and

leaving the other cut untouched.

10 The denomination of the various regimes follows the analytical continuation of the corresponding ones

in the physical dynamics.
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N=4 SYM rapidity space mirror transformation:
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mirror particles are responsible for finite-size corrections (TBA, Quantum Spectral Curve)
[Ambjorn, Janik, Kristjansen, 05,…] [Gromov, Kazakov, Vieira, 09,…]
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the spin chain is secretly a field theory



Integrability data in planar N = 4 SYM

Figure 1: The spectral curve for classical superstrings on AdS5 ⇥ S5. The
sheets are connected by cuts (green), which characterize classical solutions. The
left most cut alone, e.g. corresponds to a one-cut solution in the S3⇥R subspace,
whereas the second cut is supported in AdS3 ⇥ S1. The remaining part of the
graph depicts all polarization of physical fluctuations. Red: bosonic fluctuations
in the S5 direction. Blue: bosonic fluctuations in the AdS5 direction. Green and
purple: fermionic fluctuations.

• The eight sheets are connected by cuts. Each of these connects two sheets, e.g. i
and j, and will be denoted by Cij. The quasi-momenta will have discontinuities
along these branch-cuts

p
i

(x+ i✏)� p
j

(x� i✏) = 2⇡n
ij

, x 2 Cij

n

(2.13)

for the combination of sheets

i 2 {1̃, 2̃, 2̂, 2̂} , j 2 {3̃, 4̃, 3̂, 4̂} . (2.14)

More specifically, we can associate with cuts stretching between sheets of various
types a ”polarization”. These correspond precisely to the sixteen physical polar-
ization of the superstring in AdS5 ⇥ S5 and are identified in the algebraic curve in
terms of cuts connecting the following pairs of sheets:

S5 : (1̃, 3̃) , (1̃, 4̃) , (2̃, 3̃) , (2̃, 4̃)

AdS5 : (1̂, 3̂) , (1̂, 4̂) , (2̂, 3̂) , (2̂, 4̂)

Fermions : (1̃, 3̂) , (1̃, 4̂) , (2̃, 3̂) , (2̃, 4̂)

(1̂, 3̃) , (1̂, 4̃) , (2̂, 3̃) , (2̂, 4̃) .

(2.15)

The situation is depicted in figure 1, where both macroscopic cuts, that correspond
to a classical solution are shown, as well as all the physical excitations from (2.15).

6

Full information about a particular state is encoded in a 8-sheeted curve (quasi-momentum) 
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motion in S5

motion in AdS5



Correlation functions in N=4 SYM

3

1

2

initial data: three states with definite conformal dimensions and psu(2,2|4) charges
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the three point function  
dual to three-string interaction 

is the basic building block for correlation function 
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The hexagon decomposition
[Basso, Komatsu, Vieira, 15]

the asymptotic part of the three point function can be written as a sum over partitions for  
the three groups of rapidities

data of the three operators, namely the charges of the global symmetry group PSU(2, 2|4)
and the charges of the infinite symmetry group associated to integrability. The latter ones,

dependent on the coupling constant g, can be encapsulated, at least in the regime of in the

small g, by three collections of rapidities u
1

,u
2

,u
3

, each associated to one of the operators

O
1

(x
1

), O
2

(x
2

), O
3

(x
3

). At g = 0 the three sets of rapidities are determined by Bethe

ansatz equations for three PSU(2, 2|4) spin chains with lengths L
1

, L
2

and L
3

. At non-zero

values of the coupling constant g, the spin chains acquire long-range interaction and the

so-called asymptotic Bethe ansatz is not exact anymore. The long-range corrections can be

interpreted as coming from virtual particles circulating in the so-called mirror channel, where

time and space are interchanged. These virtual particles are called mirror particle. Their

contribution to the spectrum of conformal dimensions �(g) can be exactly determined via

a set of functional equations known under the name of Quantum Spectral Curve, equivalent

to a system of Thermodynamic Bethe Ansatz equations. In the large volume limit the

contribution of the virtual particles is exponentially small.

Through the AdS/CFT correspondence [23], the three-point function is dual to a three-

string interaction connecting three strings with energies �
1

, �
2

, �
3

. The rapidities can

be then associated to the momenta of excitation modes, or magnons, propagating on the

1+1 dimensional worldsheet. For a particular subset of the operators, the BPS operators,

the conformal dimensions do not depend on the coupling constant g and the associated

rapidities are trivial (i.e. infinite). We are going to use a bullet to symbolise a non-BPS

operator and an empty circle to denote the BPS one with the same global charges. To

remove some trivial combinatorial factors we are dividing the three-point function by the

three-point function of the corresponding BPS operators, e.g.
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N
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2

(2.2)

denotes the three-point function of two non-BPS and one BPS operator. In the above

formula,
p
Ni are the normalisation of the three incoming states, which can be expressed

in terms of the Gaudin determinants. In this work we are not considering the explicit

expression of the norms, and prefer considering the unnormalised structure constants C
123

defined in (2.2) instead of the normalised structure constants C
123

. The semiclassical limit

of the norms in the absence of mirror correction was taken in [7, 24].

An all-loop prescription to compute the three-point function was given in [1]. The

guiding principle of the proposal is to split the worldsheet of the three interacting strings

into two overlapping hexagons, and then sum over all possible ways of distributing the

magnon excitations between the two hexagons, u
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as illustrated in figure 2.1. In the absence of the mirror corrections (asymptotic limit) the
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Figure 2.1: A possible arrangement of excitations for the hexagon form factors.
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Explicit expressions for transition factors w`i�1,i(↵i, ↵̄i) and hexagon form factors H(↵
1

|↵
3

|↵
2

)

were proposed in [1] and will be given later. The building blocks of the hexagon form factors

are the bi-local hexagon amplitudes h(u, v) proposed in [25] and the elements of the Beisert’s

scattering matrix [26]. Here we are going to consider only structure constants of operators

from the rank-one sectors su(2) and sl(2) and we are therefore not going to use the matrix

structure of the hexagon form factors.

Figure 2.2: Vacua and su(2) excitations in the reservoir picture of BKV [1].

To connect with the weak-coupling picture and the corresponding notations, it is useful

to represent the three-point function we consider in the reservoir picture of [1] represented
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more precise meaning? 

translate the properties of the vertex into the scattering image? 

data of the three operators, namely the charges of the global symmetry group PSU(2, 2|4)
and the charges of the infinite symmetry group associated to integrability. The latter ones,

dependent on the coupling constant g, can be encapsulated, at least in the regime of in the

small g, by three collections of rapidities u
1

,u
2

,u
3

, each associated to one of the operators

O
1

(x
1

), O
2

(x
2

), O
3

(x
3

). At g = 0 the three sets of rapidities are determined by Bethe

ansatz equations for three PSU(2, 2|4) spin chains with lengths L
1

, L
2

and L
3

. At non-zero

values of the coupling constant g, the spin chains acquire long-range interaction and the

so-called asymptotic Bethe ansatz is not exact anymore. The long-range corrections can be

interpreted as coming from virtual particles circulating in the so-called mirror channel, where

time and space are interchanged. These virtual particles are called mirror particle. Their

contribution to the spectrum of conformal dimensions �(g) can be exactly determined via

a set of functional equations known under the name of Quantum Spectral Curve, equivalent

to a system of Thermodynamic Bethe Ansatz equations. In the large volume limit the

contribution of the virtual particles is exponentially small.

Through the AdS/CFT correspondence [23], the three-point function is dual to a three-

string interaction connecting three strings with energies �
1

, �
2

, �
3

. The rapidities can

be then associated to the momenta of excitation modes, or magnons, propagating on the

1+1 dimensional worldsheet. For a particular subset of the operators, the BPS operators,

the conformal dimensions do not depend on the coupling constant g and the associated

rapidities are trivial (i.e. infinite). We are going to use a bullet to symbolise a non-BPS

operator and an empty circle to denote the BPS one with the same global charges. To

remove some trivial combinatorial factors we are dividing the three-point function by the

three-point function of the corresponding BPS operators, e.g.
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N
2

(2.2)

denotes the three-point function of two non-BPS and one BPS operator. In the above

formula,
p
Ni are the normalisation of the three incoming states, which can be expressed

in terms of the Gaudin determinants. In this work we are not considering the explicit

expression of the norms, and prefer considering the unnormalised structure constants C
123

defined in (2.2) instead of the normalised structure constants C
123

. The semiclassical limit

of the norms in the absence of mirror correction was taken in [7, 24].

An all-loop prescription to compute the three-point function was given in [1]. The

guiding principle of the proposal is to split the worldsheet of the three interacting strings

into two overlapping hexagons, and then sum over all possible ways of distributing the

magnon excitations between the two hexagons, u
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as illustrated in figure 2.1. In the absence of the mirror corrections (asymptotic limit) the
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Figure 2.1: A possible arrangement of excitations for the hexagon form factors.
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Explicit expressions for transition factors w`i�1,i(↵i, ↵̄i) and hexagon form factors H(↵
1

|↵
3

|↵
2

)

were proposed in [1] and will be given later. The building blocks of the hexagon form factors

are the bi-local hexagon amplitudes h(u, v) proposed in [25] and the elements of the Beisert’s

scattering matrix [26]. Here we are going to consider only structure constants of operators

from the rank-one sectors su(2) and sl(2) and we are therefore not going to use the matrix

structure of the hexagon form factors.

Figure 2.2: Vacua and su(2) excitations in the reservoir picture of BKV [1].

To connect with the weak-coupling picture and the corresponding notations, it is useful

to represent the three-point function we consider in the reservoir picture of [1] represented

6

To compute such three-point functions using the hexagon, we first collect all the scalar

excitations to one of the edges by performing the mirror transformation � several times

[1]. (See figure 2.1 for the configuration of the excitations before performing the mirror

transformations.) After collecting them on the second edge (O
2

) on the left hexagon and

on the first edge (O
1

) on the right hexagon, we obtain the hexagons with {↵4�
1

,↵2�
3

,↵
2

} and

with {↵̄4�
2

, ↵̄2�
3

, ↵̄
1

}. There are of course several other ways to collect the excitations to one

of the edges. However, the advantage of the choice described here is that all the excitations

become Y after the transformation owing to the transformation property of the excitations

clarified in [1]:

Y
2�! �Ȳ , Ȳ

2�! �Y . (4.1)

Then, since all the excitations are of the Y type, the hexagon form factor factorises into

two-particle form factors7 h(u, v).

We also study an analogous configuration in the sl(2) sector, where O
1

and O
2

contain D

excitations and O
3

contains D̄ excitations. The hexagon form factor for this configuration

can be computed in a similar way, namely by collecting all the excitations to the one of the

edges by using the mirror transformations.

4.1 Formulation in terms of multiple contour integrals

The asymptotic part of the un-normalised structure constant with three non-BPS operators,

which we denote by [C•••
123

], is given by a sum over the partitions of all the three sets of Bethe

roots into left and right subsets, ui = ↵i [ ↵̄i:

[C•••
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with the splitting factors given by

w`(↵, ↵̄) = e�ip↵`
h<(↵̄,↵)

h>(↵, ↵̄)
, h

>
<(u,v) ⌘

Y

j
>
<k

h(uj, vk) . (4.3)

7Here we included the matrix part A(u, v) in the definition of h(u, v) for the su(2) sector, as we did in

section 3.
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explicit Ansatz for the hexagon amplitudes                         obeying form-factor-like axioms  

similarity to the scalar product decomposition  [Izergin, Korepin, Slavnov,…]
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Hexagon as a form factor
[Basso, Komatsu, Vieira, 15]

the hexagon can be seen as the form factor of a twist-like operator inducing a curvature  

excess of 180  degrees [Cardy, Castro-Alvaredo, Doyon, 06]

Figure 2.3: The physical and bottom mirror excitations.

2.2 Results and comparison with strong coupling

In the case when the incoming operators correspond to semiclassical strings, the lengths

L
1

, L
2

, L
3

of the three chains and the numbers of the magnon excitations M
1

, M
2

, M
3

are

large.4 The semiclassical limit is controlled by a small parameter ✏ such that ✏Li and ✏Mi

remain finite when ✏ ! 0. This limit exists for any value of the ’t Hooft coupling g. In

addition to the semiclassical limit, one can take the strong coupling limit where the e↵ective

coupling g0 = ✏g remains finite when ✏ ! 0.

In general, we need to take into account the partitions of three sets of physical rapidities

and sum over all mirror excitations on the mirror edges, which is still open. Here we report

some modest progress, by taking the sum and the semiclassical limit in three particular

cases when the operators belong to the rank-one su(2) and sl(2) sectors:

• the expression of the asymptotic part of the structure constant for one non-BPS and

two BPS operators, [C•��
123

]asympt for any value of the coupling constant,

• the expression of the asymptotic part of the I-I-II structure constant5 for three non-

BPS operators belonging to two di↵erent su(2) or sl(2) sectors, [C•••
123

]asympt, for any

value of the coupling constant,

• the expression of the bottom mirror contribution for one non-BPS and two BPS

operators, [C•��
123

]bottom in the strong coupling limit.

4Based on the experience with the spectrum [36], we may expect that, for sl(2), the results for the

semiclassical strings can be applied safely to small values of ✏Li.
5 The I-I-I type structure constant remains out of reach of our method for the moment.
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solution from bootstrap (form factor axioms) 

dynamical part matrix part

3

u3� v2� w

h(u3� , v2� , w) = H

✓
w v �
� u �

◆

FIG. 4. A mirror transformation � : u ! u� moves an
excitation to a neighbouring edge. As illustrated here on
a simple example, we can iterate it to relate a creation
amplitude h with all particles at the top to the most
general hexagon process H where excitations can inhabit
any of the six edges.

Furthermore, combining symmetry arguments with el-
ementary bootstrap considerations hints at a simple and
natural generalization to multi-particle states. The con-
jecture is that the N -magnon hexagon amplitude (1) is
exactly given by

hA
1

˙A
1

··· =(�1)f
Y

i<j

hijh�
˙AN

N . . .�
˙A
1

1

| S |�A
1

1

. . .�AN
N i , (2)

where �A = �a| ↵ is a state in the fundamental SU(2|2)
multiplet and S is Beisert SU(2|2) S-matrix [32] with
dressing phase set to one. (f is a simple integer which
accommodates for the grading [34].) The multi-particle
formula (2) identifies the hexagon form factor with the
(factorized) scattering matrix elements up to the scalar
factor hij = h(ui, uj), which is a function of two magnon
rapidities. The latter can be constrained by crossing sym-
metry and argued to be given by

h
12

=
x�

1

� x�
2

x�
1

� x+

2

1 � 1/x�
1

x+

2

1 � 1/x+

1

x+

2

1

�
12

, (3)

where x± = x(u ± i
2

) are familiar Zhukowsky variables
(with u/g = x + 1/x) and �

12

is (half) the BES dressing
phase [35]. Accordingly, the hexagon form factor is as
depicted in figure 5, and its evaluation is straightforward,
as exemplified in appendices K and L. It shows, in the
end, some similarities with the pentagon transitions for
null Wilson loops, in that it factorizes into a dynamical
part (the product of h’s) and a matrix part (the S-matrix
element). An important di↵erence is that the relevant
symmetry group for the null Wilson loops was just SO(6)
whereas here it involves a more sophisticated supergroup,
leading, as a byproduct, to a coupling dependent matrix
part.

Relations (2) and (3) finalize our proposal, which pro-
vides, in principle, a complete non-perturbative recipe
for computing structure constants of any planar gauge
invariant operators in this theory. Of course, it is cru-
cial to sharpen it and verify its predictions on the sim-
plest possible examples. This is what the rest of paper is
about.

SU(2|2) 
Beisert 
S-matrix

SU(2|2)2 
excitation

Matrix Part

Scalar Part

=
NY

i<j

h(ui, uj) ⇥

L R

FIG. 5. The multi-particle conjecture relates the hexagon
creation amplitude to a multi-particle scattering process
as depicted here.

III. PROPERTIES OF THE HEXAGON ANSATZ

In this section we elaborate on the properties of the
hexagon ansatz (2).

An equivalent way of thinking about our problem is by
introducing a vertex hh| which can be contracted against
three spin-chain states, like in [19–21], e.g.

hA ˙A = hh|
�
|�A ˙Ai

1

⌦ |0i
2

⌦ |0i
3

�
, (4)

for a single magnon on top of the first spin chain. We
use here an invariant notation where each operator-ket is
thought of as being made out of excitations on top of the
same BMN Z-vacuum. Implicit in there is the need to
actually rotate (and translate) the kets in order to get a
non-zero result compatible with R-charge conservation.
There are several realization of these rotations, one of
which is discussed in appendix B and applied (up to a
small twist) in the next section.

The symmetry group of each ket in (4) is the usual
one for excitations on top of the BMN vacuum, that is
the extended PSU(2|2)2 introduced by Beisert in [32].
The intersection of the three symmetry groups for the
three rotated vacua is a single PSU(2|2), which can be
thought of as a diagonal subgroup of symmetries of the
BMN vacuum, as explained in appendix B. This group
is nothing but the supersymmetrization of the obvious
bosonic group O(3)

Lorentz

⇥ O(3)R�charge

that preserves
3 points in space time and 3 (generic) null vectors in
‘R-space’.

As mentioned earlier, for low number of magnons,
this symmetry leaves very little freedom. For a single
magnon, as explained in appendix C, it fixes the form
factor to be [36]

haȧ = hh|�aȧi = ✏aȧ , h↵↵̇ = hh|D↵↵̇i = N✏↵↵̇ , (5)

such that the only non-zero one point functions are those
corresponding to so-called longitudinal magnons, that is,
the two scalars Y = �1

˙

2, Ȳ = �2

˙

1 and the two deriva-
tives D = D1

˙

2, D̄ = D2

˙

1 polarized along the direction of
the three-point function. The relative weight N is rather
arbitrary, since it absorbs the normalization freedom be-
tween states of the PSU(2|2)2 n R3 magnon irrep (see
e.g. (C6)). It can be fixed to N = i in the commonly
used string frame normalization and to N = 1 in the
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Computing the asymptotic part

the asymptotic part of the three point function can be written as a sum over partitions for  
the rapidities         

The function h(u, v), which is given in our case by h(u, v)
su(2)

⌘ hY Y (u, v), is the building

block for the hexagon expansion in the configuration described above. It is given by the

product of three factors,

h(u, v)
su(2)

=
u� v

u� v + i✏

1

s(u, v)�(u, v)
, (3.6)

where s(u, v) is the symmetric part,

s(u, v) =
(1� 1/x+y+) (1� 1/x�y�)

(1� 1/x+y�) (1� 1/x�y+)
(3.7)

and �(u, v) = 1/�(v, u) is the square root of the BES dressing phase [39, 40]. The reason to

split h(u, v) as above is that at tree (g = 0) level, s(u, v) = �(u, v) = 1. It will be important

in the following that neither s(u, v) nor �(u, v) has singularities close to u = v. We use the

notation x± = x(u ± i✏/2) and y± = x(v ± i✏/2). The unnormalised structure constant is

defined as a sum over partitions of the rapidities u into two subsets, u = ↵ [ ↵̄,

[C•��
123

]asympt ⌘ A =
X

↵[↵̄=u

(�1)|↵̄|
Y

j2↵

eip(uj)`R
Y

j2↵,k2↵̄

1

h(uk, uj)
, (3.8)

where `R = 1

2

(L
1

+ L
3

� L
2

) is the length of the bridge between the first operator (on the

top) and the third one. In order to have a complete match with the original tree-level result

reported in [7, 29], we will work with an equivalent representation,

A =
X

↵[↵̄=u

(�1)|↵|
Y

j2↵

e�ip(uj))`
Y

j2↵,k2↵̄

1

h(uj, uk)
, ` ⌘ `L, (3.9)

where `L = 1

2

(L
2

+ L
1

� L
3

) is the length of the bridge connecting the first and the second

operator. The equivalence of the two expression can be shown by using the Bethe ansatz

equations (3.3) with L
1

= `L + `R. Formally, at tree-level, the two expressions (3.9) and

(3.8) can be obtained from each other by exchanging `L and `R and sending ✏ ! �✏.

Extending the tree-level observation in [10], the sum over partitions (3.9) can be written

as a multiple contour integral
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1
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I
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nY

j=1

dzj
2⇡✏

F (zj)
nY

j<k

h(zj, zk)h(zk, zj) , (3.10)

where the integration contour Cu closely encircles the rapidities u = {u
1

. . . uN} counter-

clockwise, the function F (x) is given by

F (z) =
e�ip(z)` µ(z)

h(z,u)
, h(z,u) ⌘

NY

j=1

h(z, uj) , (3.11)
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 integral representation [Kostov, 12; Bettelheim, Kostov, 14]

 fermionic dipole representation                  Fredholm determinant (Pfaffian)
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Clustering

next section, we prefer to work out in detail the clustering method on the simpler case, and

then have a result ready to use for to the more complicated case. Since the su(2) and sl(2)

sectors are largely similar, we treat only the former in detail, and just give the results and

point out the main di↵erence for the latter.

3.1 From sum-over-partition to multiple contour integral

In the definition of the structure constant, the three operators are represented by on-shell

states of three di↵erent spin chains of lengths L
1

, L
2

, L
3

. Only the first chain of length

L ⌘ L
1

has non-trivial excitations (magnons) with momenta p
1

, . . . , pM , M ⌘ M
1

. The

momenta are parametrised by the corresponding rapidities u = {u
1

, . . . , uM} according to

eip(u) =
x(u+ i✏/2)

x(u� i✏/2)
. (3.1)

Above, we have rescaled the rapidity variables by ✏ which will be set at the typical value for

the rapidities u. In the regime dual to semiclassical strings, this overall scale is ✏ ⇠ 1/L
1

.

The semiclassical limit is ✏ ! 0. The Zhukovsky variable x(u) is defined as

x(u) =
u+

q
u2 � (2g✏)2

2g✏
. (3.2)

The rapidities u satisfy the Bethe equations

ei�j = 1 , j = 1, . . . ,M, (3.3)

where �j is the total scattering phase for the j-th magnon

e�j = e�ip(uj)L
Y

k( 6=j)

S(uj, uk), (3.4)

S(u, v) being the scattering matrix, which can be represented as the ratio

S(u, v) =
h(v, u)

h(u, v)
. (3.5)

The function h(u, v), which is given in our case by h(u, v)
su(2)

⌘ hY Y (u, v), is the building

block for the hexagon expansion in the configuration described above. It is given by the

product of three factors,

h(u, v)
su(2)

=
u� v

u� v + i✏

1

s(u, v)�(u, v)
, (3.6)
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In the all loop pairwise interaction

�all(zj, zk) ⌘ h(zj, zk) h(zk, zj) = �(zj, zk) s(zj, zk)
2 (3.13)

the dressing factor drops out due to the anti-symmetry of the dressing phase. In the

semiclassical limit ✏ ! 0, the deviation of the interaction �all(u, v) with respect with its

tree level value �(u, v) is subleading,

�all(u, v) = �(u, v)
�
1� c(u, v, g✏)2 ✏2 +O(✏3)

�
, (3.14)

where c(u, v, g✏) is some function of the rapidities u and v and the e↵ective coupling g0 =

g✏. It is important that even at strong coupling, where g0 is finite, the correction to the

interaction is subleading. A similar property is valid for the measure µ(u)

µ(u) = 1� c(u, u, g✏) ✏2 +O(✏3) . (3.15)

This will allow us to take the semiclassical limit of the asymptotic contribution for any value

of the coupling constant, including strong coupling. The main steps of the derivation can

be understood on the tree-level example, which can be treated exactly and will be worked

out in detail in the following. The clustering procedure explained below works exactly as in

the tree-level, as long as the integration contours are kept as distance from the cuts of the

dressing phase �(u, v), that is out of the region �2g0 < Re(zk) < 2g0. This is certainly the

case for semiclassical strings.

3.2 Tree-level revisited

The structure constant of one non-BPS and two BPS operators at three level A was first

studied thoroughly in [24] and [6]. In this section, we revisit the tree-level result by a

di↵erent method which allows direct generalisations to all loops.

The starting point is the multiple integral contour integral (3.10)

A =
NX

n=0

1

n!

I

Cu

nY

j=1

dzj
2⇡✏

F (zj)
nY

j<k

�(zj, zk), (3.16)

where the di↵erent ingredients take their tree-level values5

F (z) =
e�ip(z)`

h(z,u)
, h(z, u) =

z � u

z � u+ i✏
. (3.17)

5To avoid proliferation of symbols we keep the same notations as for all-loop case for most objects.
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Here we will give a rigorous derivation of the semiclassical limit based on an exact

evaluation of each term in the sum in (3.16) and then taking the limit. We will observe a

formation of bound states in close analogy to the bound states of instantons appearing in

the Nekrasov-Shatashvili limit.

3.3 Deformation of contours and clustering

Here we will set up a procedure which allows to perform an expansion in the parameter

✏ around the semiclassical limit ✏ ! 0, L ⇠ M ⇠ 1/✏ ! 1 of the functional A in

(3.16). Namely, we deform the integration contours sequentially so that they become widely

separated and far way from the support of u, as is shown in figure 3.4. After the contour

Figure 3.4: Deformation of the integration contours. Here Ck is the deformed contour of

the integration variable xk, which is situated at a distance larger than ✏ from all the other

contours.

deformation, we have |zj�zk| � ✏ and the singularities in the multiple integrals are removed.

In the procedure of deformation of contours, one has to take into account the residues of

the poles in the interaction terms �(zi, zj) in (3.16). This leads to a phenomenon we call

clustering which was considered in various forms in [13, 34], in [14, 15] and in [16] and which

is reminiscent of the formation of bound states as solutions of the Bethe equations. Similar

integrals appeared in [18] as the resolution of identity for Bethe states, which goes back to

[38]. A similar procedure was suggested in [10] in order to take the strong coupling limit of

15
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�
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1
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I
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dz
j
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F (z
j

)qj

q2
j

= exp

I

Cu

dz

2⇡✏

X

q

F (z)q

q2
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I

Cu

dz

2⇡✏
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2

[F (z)] .

(84)
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Mirror particle contribution
[Basso, Komatsu, Vieira, 15]

the asymptotic contribution is “dressed” by the mirror particles  

                                                (one non-BPS state and one mirror channel shown)       

bottom mirror excitations

physical excitations

Figure 2.3: The physical and bottom mirror excitations.

coupling g0 = ✏g remains finite when ✏ ! 0. Based on the experience with the spectrum

[29], we may expect that, for sl(2), the results for the semiclassical strings can be applied

safely to small values of ✏Li.

The summation over the di↵erent ways of partitioning the rapidities in equation (4.2),

as well as the summation over the mirror particles remains an open problem in general.

Here we report some modest progress in taking the sum and the semiclassical limit in three

particular cases when the operators belong to the rank-one sectors su(2) and sl(2):

• the expression of the asymptotic part of the structure constant for one non-BPS and

two BPS operators, [C•��]asympt for any value of the coupling constant,

• the expression of the asymptotic part of the I-I-II structure constant3 for three non-

BPS operators belonging to two di↵erent su(2) or sl(2) sectors, [C•••]asympt, for any

value of the coupling constant,

• the expression of the bottom mirror contribution for one non-BPS and two BPS

operators, [C•��]bottom in the strong coupling limit.

The first case is a relatively simple generalisation of the result obtained by [6, 7, 9] at tree-

level. Here we use a slightly di↵erent method of taking the semiclassical limit, based on an

integral representation of the sums in (4.2) which has already appeared in [9]. This method

is alternative to the Fredholm determinant method used there and it is easily adaptable to

situation when the structure constant cannot be written exactly as a determinant. Finally,

the structure of the integrals in the third case ressemble strongly that from the first two

3 The I-I-I type structure constant remains out of reach of our method for the moment.

8

in 2.2. In this picture, the first operator O
1

is of the form Tr(ZL1�M1Y M1)+ . . . , the second

operator O
2

is of the form Tr(Z̄L2�M2Ȳ M2) + . . . , and the third operator O
3

, the reservoir,

is built as Tr(Z + Z̄ + Y � Ȳ )L3�M3(Ȳ � Z̄)M3 + . . .. This type of structure constant is

called type I-I-II in [27], since two operators belong to the “left” su(2) sector and one

belongs to the “right” su(2) sector in the sense that the operator O
2

can be obtained from

Tr(ZL2Y M2) + . . . and O
3

from Tr(ZL3�M3Ȳ M3) + . . . by one of the twisted translation

defined in [28] and used in [1]. A similar definition works in the sl(2) sector.

The inclusion of wrapping corrections to equation (4.2) is done by including an infinite

tower of excitations, as well as their bound states, circulating in the three mirror channels

denoted by black edges in figure 2.1. The summation is done over their rapidities and their

polarisations. The general expression is too complicated to be reproduced here; instead, we

can illustrate the type of contribution on the case of a single non-BPS operator. We consider

only the mirror particles in the channel opposed to that operator, as showed in figure 2.3.

Following [25] we call this channel the bottom channel. In this case, the asymptotic and

mirror contributions conveniently factorise,

C•�� = [C•��]bottom [C•��]asympt . (2.4)

Schematically, given in terms of only the fundamental excitations, the expression of the

wrapping corrections is given by [1, 25]

[C•��]bottom =

Z 1

�1
dw µ(w�) eip(w

�
)`B T (w�) h 6=(w�,w�) h(u,w�3�) , (2.5)

with `B = 1

2

(L
2

+ L
3

� L
1

) the length of the bottom bridge of the correlator, opposed to

the operator O
1

and T (w) the su(2|2) spin chain transfer matrix [26]. The full result takes

into account all the bound states and will be given in the corresponding section. Here and

below the index � stands for the mirror transformation and we use the shorthand notations

h(u,v) ⌘
Y

i,j

h(ui, vj) , h 6=(u,u) =
Y

i 6=j

h(ui, uj) . (2.6)

2.1 Results and comparison with strong coupling

In the case when the incoming operators correspond to semiclassical strings, the lengths

L
1

, L
2

, L
3

of the three chains and the numbers of the magnon excitations M
1

, M
2

, M
3

are

large. The semiclassical limit is controlled by a small parameter ✏ such that ✏Li and ✏Mi

remain finite when ✏ ! 0. This limit exists for any value of the ’t Hooft coupling g. In

addition to the semiclassical limit, one can take the strong coupling limit where the e↵ective

7

e.g. bottom channel:

sum over the rapidities w and polarisations of the mirror particles emitted by one hexagon and  

absorbed by the other (insertion of a resolution of identity)

mirror particles from different channels interact non-trivially 



Structure of the three point function in the 
semiclassical limit

• all-loop asymptotic result for type I-I-II correlators 

su(2) and sl(2) sectors

• mirror contribution in the bottom channel at strong coupling (one non-BPS operator)

[Kazama, Komatsu, 13; Kazama, Komatsu, Nishimura, 16]

matches contributions from strong coupling computations via string sigma model 

cases, and we are able to take the sum over bound states exactly in the strong coupling

limit.

The answer for the semiclassical structure constants is given in terms of quasi-momenta

associated to the three operators, which encode the corresponding rapidities. For operators

duals to semiclassical strings, the rapidities are distributed on a set of cuts, which connect

di↵erent sheets of the quasi-momenta. We are going do denote by p̃(k) the sphere part and

by p̂(k) the AdS part of the quasi-momentum associated to the operator Ok. The definition

of the quasi-momenta will be given in the main text. The results for the su(2) and sl(2)

sectors are

log[C•••
123

]asympt

su(2)

= �1

✏

I

Cu1[u2

du

2⇡
Li

2

h
eip̃

(1)
L +ip̃

(2)
L �ip̃

(3)
R

i
� 1

✏

I

Cu3

du

2⇡
Li

2

h
eip̃

(3)
R +ip̃

(2)
L �ip̃

(1)
L

i
, (2.7)

log[C•••
123

]asympt

sl(2)

=
1

✏

I

Cu1[u2

du

2⇡
Li

2

h
eip̂

(1)
L +ip̂

(2)
L �ip̂

(3)
R

i
+

1

✏

I

Cu3

du

2⇡
Li

2

h
eip̂

(3)
R +ip̂

(2)
L �ip̂

(1)
L

i
. (2.8)

where Cuk
is a contour encircling counterclockwise the support of the rapidities uk. The

result for [C•��
123

]asympt is the particular case where u
2

= u
3

= ;. We would like to emphasise

that the expression above are valid when the length of the three operators L
1

, L
2

and L
3

are

large and the supports of u
1

, u
2

and u
3

are well separated. The so-called heavy-heavy-light

diagonal limit, when the length of one of the operators, say L
3

, is small and in addition

u
1

= u
2

was studied in [30, 31].

A surprisingly similar form is taken by the result of the resummation of the virtual

particles. Here we succeeded to take the sum only of the mirror particles for the structure

constant with one non-BPS operator in the channel opposed to the non-trivial operator,

log[C•��
123

]bottom
su(2)

=
1

✏

I

U

du

2⇡

⇣
Li

2

h
ei(p̂

(2)
+p̂(3)�p̂(1))

i
� Li

2

h
ei(p̃

(2)
+p̃(3)�p̃(1)(x))

i⌘
, (2.9)

log[C•��
123

]bottom
sl(2)

= �1

✏

I

U

du

2⇡

⇣
Li

2

h
ei(p̂

(2)
+p̂(3)�p̂(1))

i
� Li

2

h
ei(p̃

(2)
+p̃(3)�p̃(1)(x))

i⌘
, (2.10)

with the contour of integration U encircling now the Zhukovsky cut with u between �2g✏

and 2g✏.

The three-point functions at strong coupling admit a completely di↵erent description,

namely in terms of the area of the classical string worldsheet. The computation from the

string theory side was completed recently building on earlier works [21]. In both su(2) and

sl(2) sectors, the result is composed of three terms,

logC•••
123

= log[C•••
123

]asympt + log[C•••
123

]wrapping +Norm . (2.11)

For the type I-I-II three-point functions in the su(2) sector, the asymptotic part and the

9

X = �
3

+ i�
4

Tr ZZZXXZZZXXXZXZZZZ . . .

{u
i,↵

}
Q↵

a

(u; {u
i,↵

}) , a = 1, . . . , 8

u

↵

Q↵

a

(u;u
↵

) , a = 1, . . . , 8

su(2)
L

� su(2)
R

' so(4) 2 so(6)
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I II

AdS part S part

X = �
3

+ i�
4

Tr ZZZXXZZZXXXZXZZZZ . . .

{u
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}
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(u; {u
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R

' so(4) 2 so(6)
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p
�

4⇡

[C•��
123
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su(2)

= “Det
⇣
sdet

�
1�GD2

� ⌘�1

“ G = gf�1 diag(1, 1 | f, f̄)

log[C•��
123
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I
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(2)
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� Li

2

h
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,

Tr ZL (91)

Z = �
1

+ i�
2

(92)

X = �
3

+ i�
4

(93)

x[a] = x(u+ ia/2)

x± = x(u± i/2)

x[+a] ! 1/x[+a]

x[�a] ! x[�a]

u

2g
= x+

1

x

g =

p
�

4⇡

E(u) =
i

x+

� i

x�

p(u) =
1

i
log

x+

x�

26

[Jiang, Komatsu, Kostov, D.S., 16]



Structure of the three point function in the 
semiclassical limit

[Kazama, Komatsu, 13; Kazama, Komatsu, Nishimura, 16]

Full mirror contribution in all channels 

E(✓) = M cosh ✓

✓ ! ✓ + i⇡

✓ ! ✓ + i⇡/2

bp
1

, bp
2

, bp
3

, bp
4

ep
1

, ep
2

, ep
3

, ep
4

log[C•••
123
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1

✏

I
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2
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(i)
+bp(j)�bp(k))

i
� Li

2
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i
� Li

2
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Analogy with Liouville: 

5.2 Determining three-point structure constants

In contrast to the shift equations forR(α), the shift equations for Cα1,α2,α3
cannot be solved

using Gamma functions. Rather, we need a function that produces Gamma functions
when its argument is shifted by b or 1

b
.

Exercise 5.1 (Upsilon function)
For b > 0, show that there is a unique (up to a constant factor) holomorphic function
Υb(x) that obeys the shift equations

Υb(x+ b)

Υb(x)
= b1−2bxγ(bx) and

Υb(x+ 1
b
)

Υb(x)
= b

2x
b
−1γ(x

b
) , (5.9)

For ib > 0, show that the meromorphic function

Υ̂b(x) =
1

Υib(−ix + ib)
, (5.10)

obeys shift equations that differ from eq. (5.9) by b··· → (ib)···.

The functions Υb(x) and Υ̂b(x) can respectively be defined for ℜb > 0 and ℜib > 0 by
analytic continuation. And we have

Υb(x) = λ
(Q
2
−x)2

b

∞
∏

m,n=0

f

(

Q
2 − x

Q
2 +mb+ nb−1

)

with f(x) = (1− x2)ex
2

, (5.11)

where λb is an unimportant b-dependent constant. Using the functions Υb(x), we can
write a solution C of the shift equations (5.8) for three-point structure constants,

Cα1,α2,α3
=

[

b
2
b
−2bµ

]Q−α1−α2−α3

Υb(2α1)Υb(2α2)Υb(2α3)

Υb(α1 + α2 + α3 −Q)Υb(α1 + α2 − α3)Υb(α2 + α3 − α1)Υb(α3 + α1 − α2)
.

(5.12)

This solution is called the DOZZ formula for Dorn, Otto, A. Zamolodchikov and Al.
Zamolodchikov. It holds if c /∈] − ∞, 1] i.e. b /∈ iR. On the other hand, doing the
replacements Υb → Υ̂b and b··· → (ib)···, we obtain a solution Ĉ that holds if c /∈ [25,∞[
i.e. b /∈ R.

In the case of (generalized) minimal models, the momentums α⟨r,s⟩ belong to a lattice
with periods b and 1

b
, so they are uniquely determined by the shift equations. The solution

is given by C or Ĉ, which coincide. (Actually C has poles when αi take degenerate values,
one should take the residues.)

In the case of Liouville theory, the solution is unique if b and b−1 are aligned, i.e. if
b2 ∈ R:

i

0 1

b ∈ R

c ≥ 25
b ∈ C

c ∈ C

b ∈ iR
c ≤ 1

(5.13)

However, for general values of c, both C and Ĉ are solutions, and there are actually
infinitely many other solutions. In order to prove the existence and uniqueness of Liou-
ville theory, we have to determine which solutions lead to crossing-symmetric four-point
functions.
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Mirror excitations at strong coupling

x± = x(u± i✏/2)

x[+a] ! 1/x[+a]

x[�a] ! x[�a]

u�
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transfer matrix for the bound state a

x± = x(u± i✏/2)

x[+a] ! 1/x[+a]

x[�a] ! x[�a]
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!
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f(u) = eiG(x) , f̄(u) = e�iG(1/x) , (86)
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We have used that at strong coupling we have, in the physical BMN regime

f [a](u) ⌘ R(+)[+a]

R(�)[+a]
! eiG(x) , f̄ [a](u) ⌘ B(�)[+a]

B(+)[+a]
! e�iG(1/x) , (5.19)

where

G(x) = 1

i

X

j

ln
x� x�

j

x� x+

j

! ✏
X

j

x0(uj)

x� x(uj)
(5.20)

is the resolvent in the x-plane, while in the mirror BMN regime we have

f [a](u�) ! eiG(1/x) , f̄ [a](u�) ! e�iG(x) . (5.21)

The transfer matrix at strong coupling. Another important element for the

integrand is the transfer matrix, arising after summing over the various polarisations of

the mirror particles. The transfer matrix in the su(2) sector is given, up to a global factor,

by [26, 44–47])

1X

a=0

T̄ [a�1]

a (u)D2a =
�
1� Y

2,2D
2

� �
1�X

2,1D
2

��1

�
1�X

1,1D
2

��1

�
1� Y

0,1D
2

�
, (5.22)

with X
2,1 = X

1,1 = 1 , Y
2,2 =

R(�)�

R(+)� =
1

f� , Y
0,1 =

B(+)+

B(�)+

=
1

f̄+

and D2 = ei✏@u .

The bar on the function Ta means complex conjugation, and assuming the rapidity u to be

real this means just changing the sign of the imaginary shifts.

A change in the normalisation of the transfer matrix can be obtained by multiplying the

shift operator by an arbitrary function, D2 ! �N̄(u)D2 in the generating functional. Since

we are using the su(2) hexagon form factor as the dynamical part, we should normalise

the transfer matrices in such a way that the component in the su(2) sector is just 1. This

corresponds to taking N(u) to be R(�)+/R(+)+ = 1/f+. Expanding (5.22) taking into

account the normalization, one obtains (see e.g. eq. (8.67) of [48])

Ta(u) = (�1)aNa(u)


(a+ 1)� a

R(+)[+a]

R(�)[+a]
� a

B(�)[�a]

B(+)[+a]
+ (a� 1)

R(+)[+a]

R(�)[+a]

B(�)[�a]

B(+)[�a]

�
(5.23)

where Na(u) = N [1�a] N [1�a+2] . . . N [a�1]. Notice that the bound-state quantities entering

ga(u) in (5.5) have exactly the same structure as the prefactor Na(u). Therefore we can

absorb ga(u) into the normalisation factor. This amounts to replacing Na(u) in (5.23) with

g̃a(u) ⌘ Na(u)ga(u) . (5.24)
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corrections involve all the bound states, and in the integrand (5.1) all the quantities should

be replaced by their bound state counterparts. Here we are able to sum all the bound state

contribution, in the strong coupling limit, and to retrieve part of the strong coupling result.

This imply summing over all the configurations ~n = {n
1

, n
2

, . . . }, where na is the number

of bound states of a magnons,

[C•��]bottom =
X

~n

B[~n]Q
a na!

. (5.2)

The contribution of the configuration ~n is given by9
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j) , n =
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The integration contour is along the real axis in the mirror regime shown in 5.8. The bi-local

factors H�
ab(z

a
i , z

b
j) coupling two bound states of length a and b are given by

H�
ab(u, v) ⌘ hab(u

�, v�)hba(v
�, u�) , (5.4)

where hab(u, v) is the bound state counterpart of h(u, v) and is defined in (5.7). The functions

g�a(u) ⌘ ga(u�) and µ�
a(u) ⌘ µa(u�) are mirror transforms respectively of the local weight

factor ga(u) and the measure µa(u) defined as

ga(u) =
eipa(u) `B

ha,1(u,u)
, µa(u) =

1

a

(1� 1/x[�a]x[+a])2

(1� 1/x[+a]x[+a]) (1� 1/x[�a]x[�a])
. (5.5)

Throughout this chapter we are using the notation x[k] = x(u + ik✏/2). We want to

take the semiclassical limit of (5.2) and (5.3), focusing on the strong coupling limit g ! 1.

Since the su(2) and the sl(2) cases are treated in almost identical way, we will focus on the

su(2) case and will briefly summarise the sl(2) case at the end.

5.1 Quantities for bound states at strong coupling

In this section, we determine the strong coupling limit expressions of the various quantities

in the integrand (5.3). The bound state counterparts can be obtained by fusing the corre-

sponding fundamental quantities. Notice that when we perform strong coupling expansion,

9The (�1)n factor comes from the crossing transformation of the mirror magnons �aȧ 2�! ��ȧa.
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multiple integrals coupling bound states with different lengths

strong coupling limit:  

The symmetric scalar factor Hab(u, v) = hab(u, v)hba(v, u) is then given by

Hab(u, v) =
x[�a] � y[�b]

x[+a] � y[�b]
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. (5.8)

The dressing factor dropped out from the expression of the symmetric factor. In the strong

coupling limit in the mirror dynamics H�(u, v) takes the simple form
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2

u� v � i✏a+b
2
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2
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2

. (5.9)

We notice that the pairwise interaction takes in the strong coupling limit the same form as

the interaction of the bound states (3.19) in the asymptotic structure constant,

H�
ab(u, v) ' �ab(u

[�a], v[�b]) = �ab(u� 1

2

ia✏, v � 1

2

ib✏) , (5.10)

the only di↵erence being that the position of the pole is shifted to v = u± i(a+ b)✏/2.

The measure µa(u). The expression for the measure for a bound state, eq.(5.5), is

µa(u) =
1

a

(1� 1/x[�a]x[+a])2

(1� 1/x[+a]x[+a]) (1� 1/x[�a]x[�a])
. (5.11)

Performing mirror transformation for µa(u) and expanding at strong coupling in the mirror

BMN regime |x| = 1, we find

µa(u
�) ' 1

a
. (5.12)

The factor ga(u). Recall that

ga(u) =
eipa(u)`B

ha1(u,u)
, (5.13)

with
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After the continuation to the mirror dynamics, �a,1(u�, v) has extra cuts between those

situated at u � ia✏/2 and u + ia✏/2 with u 2 [�2g0, 2g0]. In particular, for even a one of

those cuts is situated on the real axis, i.e. on the contour of integration for the mirror particle

contribution. These cuts are compensated by an extra factor coming from the normalisation

of the transfer matrix, as we will show below. The quantity we have to consider is

g̃a = ga(u)
R(�)[2�a]

R(+)[2�a]
. . .

R(�)[a]

R(+)[a]
. (5.15)
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taking into account the poles in the measure pinching the contour of integration 
                                 clustering of bound states
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Clustering of mirror bound states

We have prefered to keep the sign (�1)a out of the normalisation factor, since it will exactly

compensate the factor (�1)n in (5.3). Thus the re-normalised transfer matrix Ta takes the

form

Ta(u) ⌘ ga(u)Ta(u) = g̃a(u)
⇥
(a+ 1)� a f [a] � a f̄ [a] + (a� 1)f [a]f̄ [a]

⇤
. (5.25)

As it was discussed in the beginning of this chapter, the re-normalised transfer matrix Ta(u)

does not have any cut beyond the cuts of x[±a] on the physical sheet, and no cuts within the

strip |=u| < 1

2

a✏ on the mirror sheet. Therefore, the strong coupling limit of (5.25) in the

BMN mirror dynamics can be obtained by simply substituting x with 1/x in the physical

BMN expression,

Ta(u
�) ! g̃a(u�)

⇥
(a+ 1)� a f � a f̄ + (a� 1)ff̄

⇤
, (5.26)

with f and f̄ being those from (5.21). Let us further define a quantity

tn = g̃n (2� fn � f̄n) . (5.27)

It is interesting that only these quantities will appear in the final result of semiclassical

limit. They can be expressed in terms of the transfer matrix by the following relations11
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which can be derived from the generating functionals,
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)
=

X
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Str(1� zG)�1 = z
d

dz
log Sdet(1� zG)�1 =

X

a

za ta.

Here “Sdet” and “Str” denote super-determinant and super-trace respectively and G a

supergroup element with eigenvalues (x
1

, x
2

|y
1

, y
2

) = g̃(1, 1|f, f̄). By inserting the first

equation of (5.29) into the second equation of (5.29) and comparing the coe�cient of zn, we

obtain the relations (5.28). In general, the result reads
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=
X

~n :

P
a na a=n

(�1)k�1(k � 1)!
Y

a

Tna
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na!
, k ⌘

X
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na. (5.30)

11The relevance of this type of relations to clustering of mirror bound states was pointed out to us by

Benjamin Basso. These relations are valid in the semiclassical limit only, both in the BMN and mirror

dynamics, therefore we have dropped the arguments which specify the dynamics.
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The generating functional of transfer matrices at strong coupling

SU(2|2) monodromy matrix
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) = g̃(1, 1|f, f̄). By inserting the first

equation of (5.29) into the second equation of (5.29) and comparing the coe�cient of zn, we

obtain the relations (5.28). In general, the result reads
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11The relevance of this type of relations to clustering of mirror bound states was pointed out to us by

Benjamin Basso. These relations are valid in the semiclassical limit only, both in the BMN and mirror

dynamics, therefore we have dropped the arguments which specify the dynamics.
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As a first step, we consider the problem of clustering k bound states into a single bound

state. The initial bound state configuration can be labeled by ~n = {n
1

, n
2

, · · · } where na is

the number of the bound states of length a. Let us denote

n =
X

a

na a, k =
X

a

na (5.39)

so that k is the initial number of bound states and n is the length of the resulting bound

state. The big bound state is obtained by clustering the following product

Y
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naY
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Ta(zaj )

a
. (5.40)

The clustering rule for the bound states of length a and b is given, according to (5.33), by
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a
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b
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where the factorial (k � 1)! takes into account di↵erent orders of clustering. The last

expression, when summed over all the configurations of initial bound states with weight n,

gives, upon using (5.30),
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We recognise here the factor 1/n2 which is necessary to reconstruct the sought-o↵ diloga-

rithm, and which appears as a non-trivial combination of the 1/n factor from the measure

of integration µn(z) and the 1/n factor in the t� T relations (5.30).

In order to complete the proof, we have to also consider the generic case when the set

of bound states ~n = {n
1

, n
2

, · · · } cluster into bound states ~d = {d
1

, d
2

, · · · } where dl is the

number of bound state of length l. Again, as in (3.33), we find it helpful to use alternatively

the non-decreasing sequence {q
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, q
2

, · · · , qm} to caracterise ~d. The total number of cluster

in the final state is denoted by m =
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l dl. Each bound state qj in the final set is obtained

from fusing a subset ~n(j) = {n(j)
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2
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, · · · }. To
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a set of bound states                                 clusters into   
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such that
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Let us now count the symmetry factors. First, there is the factor from the definition (5.2).

Second, a permutation of the bound states of the same length in {q
1

, q
2

, · · · , qm} leads to

the same representation ~d and we have to take care of this redundancy as well. Together,

these symmetry factors are given by
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coming from distributing na bound states of type a into the di↵erent sets n(j)
a . By clustering

~n(j) into a single bound state of length qj one gets the same factor as in (5.43) for each j.

We have then

B~d =
Y

l

1

dl!
⇥

mY

j=1

Z
dzj
2⇡✏

X

~n(j)
:

P
a n

(j)
a a=qj

(�1)kj�1

(kj � 1)!

qj

Y

a

Tn
(j)
a

a (zj)

n(j)
a !

(5.48)

=
Y

l

1

dl!
⇥

mY

j=1

Z
dzj
2⇡✏

tqj(zj)

q2j

where we have used (5.30) repeatedly. B~d is the contribution of the bound states after

clustering ~d, not to be confused with the contribution before clustering, B[~n]. Using the

same argument as in section 3.4 we can write the final answer as
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5.3 The su(2) bottom mirror contribution

The result after clustering is remarkably similar to the result for the asymptotic case (3.36),

with the exception that we are now in the zero shift limit and that tn(z) is composed from

four terms. In the su(2) sector13

tsu(2)n = g̃n(1 + 1� fn � f̄n) . (5.50)

13The combination of these four terms for n = 1 in the sl(2) sector was considered in appendix M of [1].
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Clustering in cross channels

↵ ↵̄

uvw
�

� = 1

Figure 4. We obtain an octagon by stitching two hexagons together along one mirror edge. We
then consider the octagon transition between an incoming mirror magnon w in the far left and an
outgoing mirror magnon u in the far right. This transition develops a simple pole at w = u, as
soon as there is a mirror magnon v in the intermediate mirror channel to mediate the interaction
from one hexagon to the other. This pole results from two basic facts: 1) an excitation traveling
close to the bottom boundary decouples from the bulk of the geometry and moves freely, up to the
di↵ractionless scattering with the roots u = ↵[ ↵̄, 2) the distance to the boundary along the mirror
direction � is infinite.

These few basic facts about the divergences plaguing the hexagon series are all we

need to know to make sense of them and renormalize them away. They also show that one

cannot easily amend the hexagon form factors, such as e.g. remove their poles, without

taking the risk of polluting the geometry with some artificial features. This is why we

shall follow a di↵erent route: we shall excise the boundary part of the geometry that is

problematic and absorb it into the definition of the operator insertion.

3 Regularized wrapping procedure

In this section, we explain how to regularize the divergences of the hexagonal formula for

the three-point function and give a proper meaning to (2.22). We shall also review and

rederive some important facts about the wrapping corrections on the cylinder, which we

will need later on.

3.1 The regularized octagon approach

To isolate the problem with the stitching recipe, we shall glue the patches together, slowly

but surely, by going through a two-step procedure. In the first step, we consider the much

simpler problem of gluing two hexagons along a single mirror channel, which we choose to

be the channel 31. It can be thought of as a partially decompactified structure constant

in which one bridge remains finite, `
12

= `
23

= 1 and `
31

= O(1). The resulting object is

depicted in figure 4 and it has the shape of an octagon. A state u is placed on the spin

chain at the bottom of the picture and split into two subsets of roots, ↵ [ ↵̄ = u, like for

the structure constant. For convenience, we view this state as being part of the definition

of the first and second hexagons, H↵ and H↵̄. The octagon under study is then represented

– 11 –
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“gluing more slowly”

[Basso, Gonçalves, Komatsu, 17]

shift the poles out of the real axis / introduce a volume regulator:

g =

p
�

4⇡

E(u) =
i

x+

� i

x�

p(u) =
1

i
log

x+

x�

E(✓) = M cosh ✓

✓ ! ✓ + i⇡

✓ ! ✓ + i⇡/2

bp
1

, bp
2

, bp
3

, bp
4

ep
1

, ep
2

, ep
3

, ep
4

log[C•••
123

]wrapping

su(2)

=
X

{i,j,k}={1,2,3}

1

✏

I

U

du

2⇡

⇣
Li

2

h
ei(bp

(i)
+bp(j)�bp(k))

i
� Li

2

h
ei(ep

(i)
+ep(j)�ep(k))

i⌘

+
1

✏

I

U

du

2⇡

⇣
Li

2

h
ei(bp

(3)
+bp(1)+bp(2))

i
� Li

2

h
ei(ep

(3)
+ep(1)+ep(2))

i⌘

�
3X

j=1

1

✏

I

U

du

2⇡

⇣
Li

2

h
e2ibp

(j)
i
� Li

2

h
e2iep

(j)
i⌘

�

H
ab

(u, v) ⇠ (u� v)2 + (a� b)2✏2/4

(u� v)2 + (a+ b)2✏2/4

1X

nR=0

1

n
R

!

1X

nL=0

1

n
L

!

Z

R
dµ(w�

L

)

Z

R
dµ(w�

R

)
1

h(w�

L

,w�

R

)h(w�

R

,w�

L

)

⇥ e�E(wL)`L

h(w��

L

,u)
T (w��

L

)h 6=(w�

L

,w�

L

)

⇥ e�E(wR)`R

h(w�5�

R

,u)
T (w��

R

)h 6=(w�

R

,w�

R

)

⇥
X

n

(�1)n

n!

I

Cu
dµ(z) eip(z)`R

h(z,w��

L

)h(w��

L

, z)

h(z,w��

R

)h(w��

R

, z)

h 6=(z, z)

h(u, z)
(95)

�  R

27



Clustering in cross channels

shift the poles out of the real axis / introduce a volume regulator:

�  R

= exp
R

2
�Emirror

u

�Emirror

u =

Z
dz p0(z)

1X

n=1

t
n

(z)t
n

(z)

n
. (96)

Tr
12

T
a

(u)T
a

(u) @
v

logS
aa

(v)|
v=0

! t
2a

a2
+ lower

(x, t) ! (�x,�t)

(x, t) ! (it, ix)

= 1� �
ab

(u� v)

T
a

(u) T
a

(v)

h
aa

(u, v)h
aa

(v, u)
�! Tr

12

S�1

aa

(u� v + i0) S
aa

(u� v � i0) T
a

(u) T
a

(v)

h
aa

(u+ i0, v)h
aa

(v, u� i0)

↵

↵̄

v

u� i0

u+ i0

References

28

“gluing more slowly” v5�

↵ ↵̄

v�

u5�w�

Figure 9. The matrix part of the octagon transition is obtained by contracting two hexagon matrix
parts, here standing on the left and on the right. Each open string represents a magnon �A ˙A, with
the SU(2|2)L(R)

index standing at its left (right) endpoint, and each crossing stands for the action
of the SU(2|2) S-matrix S, with the orientation fixing what is incoming and what is outgoing. A
loop forms when we identify two magnons and sum over their flavors, as done here for the mirror
magnon (closed blue line) shared among the two hexagons. (There is no distinction between one or
five mirror rotations at the level of the matrix part, such that the rapidity can be chosen to be the
same all along the blue mirror loop.) The wrapped octagon matrix part is obtained by attaching
the remaining open mirror lines (in red) together. For the contact term, we must first act with
the derivative @w and then set the mirror magnons in the wrapping configuration w = v = u. It
produces two types of contributions, depending on whether we di↵erentiate the mirror-mirror or
the mirror-real interaction points. In the latter case, Yang-Baxter and unitarity moves allow us to
disentangle the two (red and blue) mirror loops; the blue line factorizing out and giving a transfer
matrix. In the former case, the two mirror lines are entangled through the mirror-mirror scattering
kernel.

rapidity w to the subset of roots that live on the first hexagon. This one is obviously

partition dependent and readily given by

second =
X

↵

a↵↵̄ e�
˜E(u)L1S(u� ,u)

i@

@u
log h(u� , ↵) . (4.12)

Notice that only the integration over u remains to be done in both (4.10) and (4.10), thanks

to the delta function in (4.8).

The next step is to include the matrix part. It reduces to two basic objects, which

are the matrix counterparts of the above two contact terms. Namely, we can express it in

terms of (some di↵erentiated version of) the transfer matrix and of the matrix part of the

scattering kernel. We refer the reader to figure 9 for a graphical explanation.

As mentioned in the beginning of this subsection, the analysis so far is for a funda-

mental mirror magnon. However, it can be generalized simply and naturally to the bound

states as shown in Appendix A. Combining all the pieces together and decorating the full

thing with bound state labels, we arrive at our final expression for the renormalized (1, 0, 1)

amplitude,

Aren

(1,0,1) = B + C
1

A
asympt

+ C
2

, (4.13)
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two kinds of contributions:

• term diverging with the volume R which will be compensated by the normalisation  
• the divergent term is the TBA correction to the energy (non-trivial check!) 

[Kostov, D.S., in progress]

[BGK, 17]

• finite terms, e.g. from the interaction of two bound states of size a 
                 check to fourth loop order against perturbative computation

give rise to the dilogarithm
presumably cancelled in the  

combinatorics

strong coupling:

[Basso, Gonçalves, Komatsu, 17]
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[Gromov, 09]

strong coupling:
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Conclusion and outlook

• three point correlation functions can be obtained from hexagon decomposition and 
resummation of virtual particles 

• the procedure should be very general and applicable for any integrable field theory (e.g. 
massive boson [Bajnok, Janik, 15-17], 2d CFT, etc) 

• higher point functions also obtainable by tessellation with hexagons [Komatsu, Fleury, 16; 
Eden, Sfondrini, 16] 

• computational techniques for the virtual particle contribution is important for evaluating 
loop integrals in the perturbative gauge theory [Basso, Dixon, 17] 

• importance of the curvature defect operators introduced in the ‘70s and used in various 
contexts; e.g.  [Castro-Alvaredo, Doyon, Fioravanti, 17]
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