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Aim & motivations
Fluctuating interfaces support long wavelength modes and correla-
tion of the order parameter exhibit a long-range character in presence
of phase separation. Although this implication has been pointed out
since long time by the theory of inhomogeneous fluids [1], these cor-
relations has never been derived within the underlying field theory
of the scaling regime. Here we show the exact derivation for the pla-
nar case [2].

One-point function
We use symmetry breaking bc.s to induce phase separation in the
bulk. We consider the near critical regime R� ξbulk � a; where a is
the lattice spacing.
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The interface is probed through the statistical average of the spin
field σ(x, y); an exact calculation reveals
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√
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R2−4y2 x and P (x; y) is the (Gaussian) passage probability

density [3].
• Abraham’s exact solution for the Ising model [3] is recovered

[4] with 〈σ〉+ = −〈σ〉−;
• subleading effects (∝ Aab(mR)−1/2) due to interfacial branch-

ing can be computed for integrable theories (as q-Potts) [3].

Two-point function
We consider the spin-spin pair correlation function. The exact calcu-
lation gives
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T is Owen’s T function and
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The scaling function G(η1, ε; η2,−ε) for ε = 0.3 is plotted:

Long-range correlations in the interfacial region are neatly seen from
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for the Ising model with ξ � y � R/2.

Interface structure factor
Interfacial fluctuations can be characterized in momentum space

through the interface structure factor S(q). For a system defined on
a finite strip
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∆〈σ〉 = 〈σ〉a − 〈σ〉b, CP = connected part. The above contains only
interfacial degrees of freedom. The exact result is
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α2 is a boundary parameter. The factor Aab vanishes for the Ising
model but it differs from zero for the q-Potts model with q = 3, 4.

Conclusions
X S(q) is derived from first principles, for a broad category of

universality classes, including its finite-size corrections for fi-
nite R and specific features of the underlying universality
class. The result is exact and holds for R� ξbulk;

X Capillary Wave Theory is reproduced at the leading order;

X For R = ∞: the (infinite) fluctuations lead to the averaging
of exponential correlations over two bulk phases and the sub-
leading corrections localize towards q = 0.
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