qKZ equations and current fluctuations in the open ASEP

Matthieu VANICAT, University of Ljubljana
with C. FINN.
J. Stat. Mech. (2017) 023102, arXiv:1610.08320

Lyon, October 2017
(1) Fluctuations of the current in open ASEP

- Definition of the model
- Cumulants generating function of the current
- Integrability
(2) qKZ equations and matrix ansatz
- Deformed ground state
- Matrix product construction
(3) Koornwinder polynomials and conjecture
- Partition function and symmetric Koornwinder
- Generating function conjecture

Fluctuations of the current in open ASEP

Asymmetric simple exclusion process (ASEP).

Asymmetric simple exclusion process (ASEP).

- In the bulk, particles hop right one site with rate p, and left with rate q

Asymmetric simple exclusion process (ASEP).

- In the bulk, particles hop right one site with rate p, and left with rate q
- Exclusion principle: there is at most one particle per site.

Asymmetric simple exclusion process (ASEP).

- In the bulk, particles hop right one site with rate p, and left with rate q
- Exclusion principle: there is at most one particle per site.
- At left boundary, particles enter with rate α and leave with rate γ

Asymmetric simple exclusion process (ASEP).

- In the bulk, particles hop right one site with rate p, and left with rate q
- Exclusion principle: there is at most one particle per site.
- At left boundary, particles enter with rate α and leave with rate γ
- At right boundary, particles leave with rate β and enter with rate δ

Asymmetric simple exclusion process (ASEP).

- In the bulk, particles hop right one site with rate p, and left with rate q
- Exclusion principle: there is at most one particle per site.
- At left boundary, particles enter with rate α and leave with rate γ
- At right boundary, particles leave with rate β and enter with rate δ

Macroscopic particle current in the stationary state

Asymmetric simple exclusion process (ASEP).

- In the bulk, particles hop right one site with rate p, and left with rate q
- Exclusion principle: there is at most one particle per site.
- At left boundary, particles enter with rate α and leave with rate γ
- At right boundary, particles leave with rate β and enter with rate δ

Macroscopic particle current in the stationary state
\longrightarrow Goal: study the statistics of this current

```
Fluctuations of the current in open ASEP
    qKZ equations and matrix ansatz
Koornwinder polynomials and conjecture

\section*{How to write efficiently this stochastic dynamics?}

\section*{How to write efficiently this stochastic dynamics?}
- Define a local basis
\[
\bullet \rightarrow|1\rangle=\binom{0}{1} \quad \sqcup \rightarrow|0\rangle=\binom{1}{0}
\]

\section*{How to write efficiently this stochastic dynamics?}
- Define a local basis
\[
\longrightarrow|1\rangle=\binom{0}{1} \quad\left\llcorner\longrightarrow|0\rangle=\binom{1}{0}\right.
\]
- Define a vector encompassing the configuration's probabilities
\[
\left|P_{t}\right\rangle=\left(\begin{array}{c}
P_{t}(0, \ldots, 0,0) \\
P_{t}(0, \ldots, 0,1) \\
\vdots \\
P_{t}(1, \ldots, 1,1)
\end{array}\right)=\sum_{\tau_{1}, \ldots, \tau_{L}=0,1} P_{t}\left(\tau_{1}, \ldots, \tau_{L}\right)\left|\tau_{1}\right\rangle \otimes \cdots \otimes\left|\tau_{L}\right\rangle
\]

\section*{How to write efficiently this stochastic dynamics?}
- Define a local basis
\[
\longrightarrow|1\rangle=\binom{0}{1} \quad\left\llcorner\longrightarrow|0\rangle=\binom{1}{0}\right.
\]
- Define a vector encompassing the configuration's probabilities
\[
\left|P_{t}\right\rangle=\left(\begin{array}{c}
P_{t}(0, \ldots, 0,0) \\
P_{t}(0, \ldots, 0,1) \\
\vdots \\
P_{t}(1, \ldots, 1,1)
\end{array}\right)=\sum_{\tau_{1}, \ldots, \tau_{L}=0,1} P_{t}\left(\tau_{1}, \ldots, \tau_{L}\right)\left|\tau_{1}\right\rangle \otimes \cdots \otimes\left|\tau_{L}\right\rangle
\]
- The stochastic dynamics then writes
\[
\frac{d\left|P_{t}\right\rangle}{d t}=M\left|P_{t}\right\rangle
\]

\section*{How to write efficiently this stochastic dynamics?}
- Define a local basis
\[
\longrightarrow|1\rangle=\binom{0}{1} \quad\left\llcorner\longrightarrow|0\rangle=\binom{1}{0}\right.
\]
- Define a vector encompassing the configuration's probabilities
\[
\left|P_{t}\right\rangle=\left(\begin{array}{c}
P_{t}(0, \ldots, 0,0) \\
P_{t}(0, \ldots, 0,1) \\
\vdots \\
P_{t}(1, \ldots, 1,1)
\end{array}\right)=\sum_{\tau_{1}, \ldots, \tau_{L}=0,1} P_{t}\left(\tau_{1}, \ldots, \tau_{L}\right)\left|\tau_{1}\right\rangle \otimes \cdots \otimes\left|\tau_{L}\right\rangle
\]
- The stochastic dynamics then writes
\[
\frac{d\left|P_{t}\right\rangle}{d t}=M\left|P_{t}\right\rangle, \quad M=B_{1}+\sum_{k=1}^{L-1} m_{k, k+1}+\bar{B}_{L}
\]

\section*{How to write efficiently this stochastic dynamics?}
- Define a local basis
\[
\longrightarrow|1\rangle=\binom{0}{1} \quad\left\llcorner\longrightarrow|0\rangle=\binom{1}{0}\right.
\]
- Define a vector encompassing the configuration's probabilities
\[
\left|P_{t}\right\rangle=\left(\begin{array}{c}
P_{t}(0, \ldots, 0,0) \\
P_{t}(0, \ldots, 0,1) \\
\vdots \\
P_{t}(1, \ldots, 1,1)
\end{array}\right)=\sum_{\tau_{1}, \ldots, \tau_{L}=0,1} P_{t}\left(\tau_{1}, \ldots, \tau_{L}\right)\left|\tau_{1}\right\rangle \otimes \cdots \otimes\left|\tau_{L}\right\rangle
\]
- The stochastic dynamics then writes
\[
\begin{array}{r}
\frac{d\left|P_{t}\right\rangle}{d t}=M\left|P_{t}\right\rangle, \quad M=B_{1}+\sum_{k=1}^{L-1} m_{k, k+1}+\bar{B}_{L} \\
B_{1}=B \otimes 1 \otimes \cdots \otimes 1, \quad \bar{B}_{L}=1 \otimes \cdots \otimes 1 \otimes \bar{B}
\end{array}
\]

\section*{How to write efficiently this stochastic dynamics?}
- Define a local basis
\[
\longrightarrow|1\rangle=\binom{0}{1} \quad\left\llcorner\longrightarrow|0\rangle=\binom{1}{0}\right.
\]
- Define a vector encompassing the configuration's probabilities
\[
\left|P_{t}\right\rangle=\left(\begin{array}{c}
P_{t}(0, \ldots, 0,0) \\
P_{t}(0, \ldots, 0,1) \\
\vdots \\
P_{t}(1, \ldots, 1,1)
\end{array}\right)=\sum_{\tau_{1}, \ldots, \tau_{L}=0,1} P_{t}\left(\tau_{1}, \ldots, \tau_{L}\right)\left|\tau_{1}\right\rangle \otimes \cdots \otimes\left|\tau_{L}\right\rangle
\]
- The stochastic dynamics then writes
\[
\begin{aligned}
& \frac{d\left|P_{t}\right\rangle}{d t}=M\left|P_{t}\right\rangle, \quad M=B_{1}+\sum_{k=1}^{L-1} m_{k, k+1}+\bar{B}_{L} \\
& B_{1}=B \otimes 1 \otimes \cdots \otimes 1, \quad \bar{B}_{L}=1 \otimes \cdots \otimes 1 \otimes \bar{B} \\
& m_{k, k+1}=\underbrace{1 \otimes \cdots \otimes 1}_{k-1} \otimes m \otimes \underbrace{1 \otimes \cdots \otimes 1}_{L-k-1}
\end{aligned}
\]


Markov matrix:
\[
M=B_{1}+\sum_{k=1}^{L-1} m_{k, k+1}+\bar{B}_{L}
\]
\[
B=\left(\begin{array}{cc}
|0\rangle & |1\rangle \\
-\alpha & \gamma \\
\alpha & -\gamma
\end{array}\right)_{|1\rangle}^{|0\rangle}
\]


\section*{Markov matrix:}
\[
M=B_{1}+\sum_{k=1}^{L-1} m_{k, k+1}+\bar{B}_{L}
\]
\[
\bar{B}=\left(\begin{array}{cc}
|0\rangle & |1\rangle \\
-\delta & \beta \\
\delta & -\beta
\end{array}\right)_{|1\rangle}^{|0\rangle}
\]


Markov matrix:
\[
M=B_{1}+\sum_{k=1}^{L-1} m_{k, k+1}+\bar{B}_{L}
\]
\[
m=\left(\begin{array}{cccc}
|0\rangle \otimes|0\rangle|0\rangle \otimes|1\rangle & |1\rangle \otimes|0\rangle & |1\rangle \otimes|1\rangle \\
0 & 0 & 0 & 0 \\
0 & -q & p & 0 \\
0 & q & -p & 0 \\
0 & 0 & 0 & 0
\end{array}\right){ }_{|1\rangle \otimes|1\rangle}^{|0\rangle \otimes|0\rangle} \begin{aligned}
& |1\rangle \otimes|0\rangle \\
& |1\rangle \\
&
\end{aligned}
\]


Markov matrix:
\[
M=B_{1}+\sum_{k=1}^{L-1} m_{k, k+1}+\bar{B}_{L}
\]
\[
B=\left(\begin{array}{cc}
-\alpha & \gamma \\
\alpha & -\gamma
\end{array}\right) \quad m=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -q & p & 0 \\
0 & q & -p & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \bar{B}=\left(\begin{array}{cc}
-\delta & \beta \\
\delta & -\beta
\end{array}\right)
\]


Deformed Markov matrix:
\[
M(\xi)=B_{1}(\xi)+\sum_{k=1}^{L-1} m_{k, k+1}+\bar{B}_{L}
\]
\[
B(\xi)=\left(\begin{array}{cc}
-\alpha & \gamma / \xi \\
\alpha \xi & -\gamma
\end{array}\right)
\]


Deformed Markov matrix:
\[
M(\xi)=B_{1}(\xi)+\sum_{k=1}^{L-1} m_{k, k+1}+\bar{B}_{L}
\]
\[
B(\xi)=\left(\begin{array}{cc}
-\alpha & \gamma / \xi \\
\alpha \xi & -\gamma
\end{array}\right) m=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -q & p & 0 \\
0 & q & -p & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \bar{B}=\left(\begin{array}{cc}
-\delta & \beta \\
\delta & -\beta
\end{array}\right)
\]

\section*{Deformation \(\xi\) "counts" injected/removed particles}
- For \(\xi=1, M(\xi)\) has a unique steady state, \(M\left|P_{\text {stat }}\right\rangle=0\).
- For \(\xi=1, M(\xi)\) has a unique steady state, \(M\left|P_{\text {stat }}\right\rangle=0\).
- For \(\xi \neq 1, M(\xi)\) is not Markovian, its leading eigenvalue is not zero
\[
M(\xi)|\Psi(\xi)\rangle=\Lambda_{0}(\xi)|\Psi(\xi)\rangle
\]
- For \(\xi=1, M(\xi)\) has a unique steady state, \(M\left|P_{\text {stat }}\right\rangle=0\).
- For \(\xi \neq 1, M(\xi)\) is not Markovian, its leading eigenvalue is not zero
\[
M(\xi)|\Psi(\xi)\rangle=\Lambda_{0}(\xi)|\Psi(\xi)\rangle
\]
- Denote by \(Q_{T}\) the number of injected particles on the left boundary during time interval \([0, T]\).
- For \(\xi=1, M(\xi)\) has a unique steady state, \(M\left|P_{\text {stat }}\right\rangle=0\).
- For \(\xi \neq 1, M(\xi)\) is not Markovian, its leading eigenvalue is not zero
\[
M(\xi)|\Psi(\xi)\rangle=\Lambda_{0}(\xi)|\Psi(\xi)\rangle .
\]
- Denote by \(Q_{T}\) the number of injected particles on the left boundary during time interval \([0, T]\).
- The cumulants generating function of the particle current is
\[
E(\mu)=\lim _{T \rightarrow \infty} \frac{1}{T} \ln \left\langle e^{\mu Q_{T}}\right\rangle
\]
- For \(\xi=1, M(\xi)\) has a unique steady state, \(M\left|P_{\text {stat }}\right\rangle=0\).
- For \(\xi \neq 1, M(\xi)\) is not Markovian, its leading eigenvalue is not zero
\[
M(\xi)|\Psi(\xi)\rangle=\Lambda_{0}(\xi)|\Psi(\xi)\rangle
\]
- Denote by \(Q_{T}\) the number of injected particles on the left boundary during time interval \([0, T]\).
- The cumulants generating function of the particle current is
\[
E(\mu)=\lim _{T \rightarrow \infty} \frac{1}{T} \ln \left\langle e^{\mu Q_{T}}\right\rangle
\]
- We have the key relation \(E(\mu)=\Lambda_{0}\left(e^{\mu}\right)\).
- For \(\xi=1, M(\xi)\) has a unique steady state, \(M\left|P_{\text {stat }}\right\rangle=0\).
- For \(\xi \neq 1, M(\xi)\) is not Markovian, its leading eigenvalue is not zero
\[
M(\xi)|\Psi(\xi)\rangle=\Lambda_{0}(\xi)|\Psi(\xi)\rangle
\]
- Denote by \(Q_{T}\) the number of injected particles on the left boundary during time interval \([0, T]\).
- The cumulants generating function of the particle current is
\[
E(\mu)=\lim _{T \rightarrow \infty} \frac{1}{T} \ln \left\langle e^{\mu Q_{T}}\right\rangle
\]
- We have the key relation \(E(\mu)=\Lambda_{0}\left(e^{\mu}\right)\).

It's a good candidate of thermodynamic potential for this non-equilibrium system.
- For \(\xi=1, M(\xi)\) has a unique steady state, \(M\left|P_{\text {stat }}\right\rangle=0\).
- For \(\xi \neq 1, M(\xi)\) is not Markovian, its leading eigenvalue is not zero
\[
M(\xi)|\Psi(\xi)\rangle=\Lambda_{0}(\xi)|\Psi(\xi)\rangle
\]
- Denote by \(Q_{T}\) the number of injected particles on the left boundary during time interval \([0, T]\).
- The cumulants generating function of the particle current is
\[
E(\mu)=\lim _{T \rightarrow \infty} \frac{1}{T} \ln \left\langle e^{\mu Q_{T}}\right\rangle
\]
- We have the key relation \(E(\mu)=\Lambda_{0}\left(e^{\mu}\right)\).

It's a good candidate of thermodynamic potential for this non-equilibrium system.
\(\longrightarrow\) Goal: compute this leading eigenvalue. (Lazarescu, Mallick)

Fluctuations of the current in open ASEP
qKZ equations and matrix ansatz Koornwinder polynomials and conjecture

Definition of the model

\section*{Integrability of the deformed Markov matrix}

\section*{Integrability of the deformed Markov matrix}
- There exists an R-matrix
\[
\check{R}(x)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{p-q}{p-q x} & \frac{p(1-x)}{p-q x} & 0 \\
0 & \frac{q(1-x)}{p-q x} & \frac{x(p-q)}{p-q x} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\]

\section*{Integrability of the deformed Markov matrix}
- There exists an R-matrix
\[
\check{R}(x)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{p-q}{p-q x} & \frac{p(1-x)}{p-q x} & 0 \\
0 & \frac{q(1-x)}{p-q x} & \frac{x(p-q)}{p-q x} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\]

Yang-Baxter equation
\(\check{R}_{12}\left(\frac{x_{1}}{x_{2}}\right) \check{R}_{23}\left(\frac{x_{1}}{x_{3}}\right) \check{R}_{12}\left(\frac{x_{2}}{x_{3}}\right)=\check{R}_{23}\left(\frac{x_{2}}{x_{3}}\right) \check{R}_{12}\left(\frac{x_{1}}{x_{3}}\right) \check{R}_{23}\left(\frac{x_{1}}{x_{2}}\right)\).

\section*{Integrability of the deformed Markov matrix}
- There exists an R-matrix
\[
\check{R}(x)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{p-q}{p-q x} & \frac{p(1-x)}{p-q x} & 0 \\
0 & \frac{q(1-x)}{p-q x} & \frac{x(p-q)}{p-q x} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\]

\section*{Yang-Baxter equation}
\[
\check{R}_{12}\left(\frac{x_{1}}{x_{2}}\right) \check{R}_{23}\left(\frac{x_{1}}{x_{3}}\right) \check{R}_{12}\left(\frac{x_{2}}{x_{3}}\right)=\check{R}_{23}\left(\frac{x_{2}}{x_{3}}\right) \check{R}_{12}\left(\frac{x_{1}}{x_{3}}\right) \check{R}_{23}\left(\frac{x_{1}}{x_{2}}\right) .
\]
with \(\check{R}_{12}(x)=\check{R}(x) \otimes 1\) and \(\check{R}_{23}(x)=1 \otimes \check{R}(x)\)

\section*{Integrability of the deformed Markov matrix}
- There exists an R-matrix
\[
\check{R}(x)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{p-q}{p-q x} & \frac{p(1-x)}{p-q x} & 0 \\
0 & \frac{q(1-x)}{p-q x} & \frac{x(p-q)}{p-q x} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\]

\section*{Yang-Baxter equation}
\(\check{R}_{12}\left(\frac{x_{1}}{x_{2}}\right) \check{R}_{23}\left(\frac{x_{1}}{x_{3}}\right) \check{R}_{12}\left(\frac{x_{2}}{x_{3}}\right)=\check{R}_{23}\left(\frac{x_{2}}{x_{3}}\right) \check{R}_{12}\left(\frac{x_{1}}{x_{3}}\right) \check{R}_{23}\left(\frac{x_{1}}{x_{2}}\right)\).
\[
\text { with } \check{R}_{12}(x)=\check{R}(x) \otimes 1 \text { and } \check{R}_{23}(x)=1 \otimes \check{R}(x)
\]
- It ensures the integrability of the bulk dynamics
\[
(q-p) \check{R}^{\prime}(1)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -q & p & 0 \\
0 & q & -p & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=m
\]

Fluctuations of the current in open ASEP
qKZ equations and matrix ansatz Koornwinder polynomials and conjecture

\section*{- There exist K-matrices}
\[
\begin{aligned}
& K(x)=\left(\begin{array}{cc}
\frac{x^{2}(\gamma-\alpha)+x(\alpha-\gamma+q-p)}{\left.x^{2} \gamma+x(\alpha-\gamma+q-p)-\alpha\right)} & \frac{\left(x^{2}-1\right) \gamma / \xi}{\left.x^{2} \gamma+x(\alpha-\gamma+q-p)-\alpha\right)} \\
\frac{\left(x^{2}-1\right) \alpha \xi}{\left.x^{2} \gamma+x(\alpha-\gamma+q-p)-\alpha\right)} & \frac{\gamma-\alpha+x(\alpha-\gamma+q-p)}{\left.x^{2} \gamma+x(\alpha-\gamma+q-p)-\alpha\right)}
\end{array}\right) \\
& \bar{K}(x)=\left(\begin{array}{cc}
\frac{x^{2}(\beta-\delta)+x(\delta-\beta+p-q)}{\left.x^{2} \beta+x(\delta-\beta+p-q)-\delta\right)} & \frac{\left(x^{2}-1\right) \beta}{\left.x^{2} \beta+x(\delta-\beta+p-q)-\delta\right)} \\
\frac{\left(x^{2}-1\right) \delta}{\left.x^{2} \beta+x(\delta-\beta+p-q)-\delta\right)} & \frac{\beta-\delta+x(\delta-\beta+p-q)}{\left.x^{2} \beta+x(\delta-\beta+q-p)-\delta\right)}
\end{array}\right)
\end{aligned}
\]

\section*{- There exist K-matrices}
\[
\begin{aligned}
& K(x)=\left(\begin{array}{cc}
\frac{x^{2}(\gamma-\alpha)+x(\alpha-\gamma+q-p)}{\left.x^{2} \gamma+x(\alpha-\gamma+q-p)-\alpha\right)} & \frac{\left(x^{2}-1\right) \gamma / \xi}{\left.x^{2} \gamma+x(\alpha-\gamma+q-p)-\alpha\right)} \\
\frac{\left(x^{2}-1\right) \alpha \xi}{\left.x^{2} \gamma+x(\alpha-\gamma+q-p)-\alpha\right)} & \frac{\gamma-\alpha+x(\alpha-\gamma+q-p)}{\left.x^{2} \gamma+x(\alpha-\gamma+q-p)-\alpha\right)}
\end{array}\right) \\
& \bar{K}(x)=\left(\begin{array}{ll}
\frac{x^{2}(\beta-\delta)+x(\delta-\beta+p-q)}{\left.x^{2} \beta+x(\delta-\beta+p-q)-\delta\right)} & \frac{\left(x^{2}-1\right) \beta}{\left.x^{2} \beta+x(\delta-\beta+p-q)-\delta\right)} \\
\frac{\left(x^{2}-1\right) \delta}{\left.x^{2} \beta+x(\delta-\beta+p-q)-\delta\right)} & \frac{\beta-\delta+x(\delta-\beta+p-q)}{\left.x^{2} \beta+x(\delta-\beta+q-p)-\delta\right)}
\end{array}\right)
\end{aligned}
\]

\section*{Reflection equations}
\[
\begin{aligned}
\check{R}\left(\frac{x_{1}}{x_{2}}\right) K_{1}\left(x_{1}\right) \check{R}\left(x_{1} x_{2}\right) K_{1}\left(x_{2}\right) & =K_{1}\left(x_{2}\right) \check{R}\left(x_{1} x_{2}\right) K_{1}\left(x_{1}\right) \check{R}\left(\frac{x_{1}}{x_{2}}\right) \\
\check{R}\left(\frac{x_{2}}{x_{1}}\right) \bar{K}_{2}\left(\frac{1}{x_{2}}\right) \check{R}\left(x_{1} x_{2}\right) \bar{K}_{2}\left(\frac{1}{x_{1}}\right) & =\bar{K}_{2}\left(\frac{1}{x_{1}}\right) \check{R}\left(x_{1} x_{2}\right) \bar{K}_{2}\left(\frac{1}{x_{2}}\right) \check{R}\left(\frac{x_{2}}{x_{1}}\right) .
\end{aligned}
\]

\section*{- There exist K-matrices}
\[
\begin{aligned}
& K(x)=\left(\begin{array}{cc}
\frac{x^{2}(\gamma-\alpha)+x(\alpha-\gamma+q-p)}{\left.x^{2} \gamma+x(\alpha-\gamma+q-p)-\alpha\right)} & \frac{\left(x^{2}-1\right) \gamma / \xi}{\left.x^{2} \gamma+x(\alpha-\gamma+q-p)-\alpha\right)} \\
\frac{\left(x^{2}-1\right) \alpha \xi}{\left.x^{2} \gamma+x(\alpha-\gamma+q-p)-\alpha\right)} & \frac{\gamma-\alpha+x(\alpha-\gamma+q-p)}{\left.x^{2} \gamma+x(\alpha-\gamma+q-p)-\alpha\right)}
\end{array}\right) \\
& \bar{K}(x)=\left(\begin{array}{ll}
\frac{x^{2}(\beta-\delta)+x(\delta-\beta+p-q)}{\left.x^{2} \beta+x(\delta-\beta+p-q)-\delta\right)} & \frac{\left(x^{2}-1\right) \beta}{\left.x^{2} \beta+x(\delta-\beta+p-q)-\delta\right)} \\
\frac{\left(x^{2}-1\right) \delta}{\left.x^{2} \beta+x(\delta-\beta+p-q)-\delta\right)} & \frac{\beta-\delta+x(\delta-\beta+p-q)}{\left.x^{2} \beta+x(\delta-\beta+q-p)-\delta\right)}
\end{array}\right)
\end{aligned}
\]

\section*{Reflection equations}
\[
\begin{gathered}
\check{R}\left(\frac{x_{1}}{x_{2}}\right) K_{1}\left(x_{1}\right) \check{R}\left(x_{1} x_{2}\right) K_{1}\left(x_{2}\right)=K_{1}\left(x_{2}\right) \check{R}\left(x_{1} x_{2}\right) K_{1}\left(x_{1}\right) \check{R}\left(\frac{x_{1}}{x_{2}}\right), \\
\check{R}\left(\frac{x_{2}}{x_{1}}\right) \bar{K}_{2}\left(\frac{1}{x_{2}}\right) \check{R}\left(x_{1} x_{2}\right) \bar{K}_{2}\left(\frac{1}{x_{1}}\right)=\bar{K}_{2}\left(\frac{1}{x_{1}}\right) \check{R}\left(x_{1} x_{2}\right) \bar{K}_{2}\left(\frac{1}{x_{2}}\right) \check{R}\left(\frac{x_{2}}{x_{1}}\right) .
\end{gathered}
\]
with \(K_{1}(x)=K(x) \otimes 1, K_{2}(x)=1 \otimes K(x), \ldots\)
- There exist K-matrices
\[
\begin{aligned}
& K(x)=\left(\begin{array}{cc}
\frac{x^{2}(\gamma-\alpha)+x(\alpha-\gamma+q-p)}{\left.x^{2} \gamma+x(\alpha-\gamma+q-p)-\alpha\right)} & \frac{\left(x^{2}-1\right) \gamma / \xi}{\left.x^{2} \gamma+x(\alpha-\gamma+q-p)-\alpha\right)} \\
\frac{\left(x^{2}-1\right) \alpha \xi}{\left.x^{2} \gamma+x(\alpha-\gamma+q-p)-\alpha\right)} & \frac{\gamma-\alpha+x(\alpha-\gamma+q-p)}{\left.x^{2} \gamma+x(\alpha-\gamma+q-p)-\alpha\right)}
\end{array}\right) \\
& \bar{K}(x)=\left(\begin{array}{ll}
\frac{x^{2}(\beta-\delta)+x(\delta-\beta+p-q)}{\left.x^{2} \beta+x(\delta-\beta+p-q)-\delta\right)} & \frac{\left(x^{2}-1\right) \beta}{\left.x^{2} \beta+x(\delta-\beta+p-q)-\delta\right)} \\
\frac{\left(x^{2}-1\right) \delta}{\left.x^{2} \beta+x(\delta-\beta+p-q)-\delta\right)} & \frac{\beta-\delta+x(\delta-\beta+p-q)}{\left.x^{2} \beta+x(\delta-\beta+q-p)-\delta\right)}
\end{array}\right)
\end{aligned}
\]

\section*{Reflection equations}
\[
\begin{gathered}
\check{R}\left(\frac{x_{1}}{x_{2}}\right) K_{1}\left(x_{1}\right) \check{R}\left(x_{1} x_{2}\right) K_{1}\left(x_{2}\right)=K_{1}\left(x_{2}\right) \check{R}\left(x_{1} x_{2}\right) K_{1}\left(x_{1}\right) \check{R}\left(\frac{x_{1}}{x_{2}}\right), \\
\check{R}\left(\frac{x_{2}}{x_{1}}\right) \bar{K}_{2}\left(\frac{1}{x_{2}}\right) \check{R}\left(x_{1} x_{2}\right) \bar{K}_{2}\left(\frac{1}{x_{1}}\right)=\bar{K}_{2}\left(\frac{1}{x_{1}}\right) \check{R}\left(x_{1} x_{2}\right) \bar{K}_{2}\left(\frac{1}{x_{2}}\right) \check{R}\left(\frac{x_{2}}{x_{1}}\right) .
\end{gathered}
\]
with \(K_{1}(x)=K(x) \otimes 1, K_{2}(x)=1 \otimes K(x), \ldots\)
- It ensures the integrability of the boundary conditions
\[
\frac{(q-p)}{2} K^{\prime}(1)=\left(\begin{array}{cc}
-\alpha & \gamma / \xi \\
\alpha \xi & -\gamma
\end{array}\right)=B(\xi), \quad \frac{(p-q)}{2} \bar{K}^{\prime}(1)=\left(\begin{array}{cc}
-\delta & \beta \\
\delta & -\beta
\end{array}\right)=\bar{B}
\]
- They are the building blocks of the transfer matrix (Sklyanin)
\[
t(x ; \mathbf{x})=\operatorname{tr}_{0}\left(\widetilde{K}_{0}(x) R_{0 L}\left(\frac{x}{x_{L}}\right) \ldots R_{01}\left(\frac{x}{x_{1}}\right) K_{0}(x) R_{10}\left(x x_{1}\right) \ldots R_{L 0}\left(x x_{L}\right)\right),
\]
- They are the building blocks of the transfer matrix (Sklyanin)
\[
t(x ; \mathbf{x})=\operatorname{tr}_{0}\left(\widetilde{K}_{0}(x) R_{0 L}\left(\frac{x}{x_{L}}\right) \ldots R_{01}\left(\frac{x}{x_{1}}\right) K_{0}(x) R_{10}\left(x x_{1}\right) \ldots R_{L 0}\left(x x_{L}\right)\right)
\]
- Yang-Baxter and reflection equations ensure the commutation relation
\[
[t(y ; \mathbf{x}), t(z ; \mathbf{x})]=0
\]
- They are the building blocks of the transfer matrix (Sklyanin)
\[
t(x ; \mathbf{x})=\operatorname{tr}_{0}\left(\widetilde{K}_{0}(x) R_{0 L}\left(\frac{x}{x_{L}}\right) \ldots R_{01}\left(\frac{x}{x_{1}}\right) K_{0}(x) R_{10}\left(x x_{1}\right) \ldots R_{L 0}\left(x x_{L}\right)\right)
\]
- Yang-Baxter and reflection equations ensure the commutation relation
\[
[t(y ; \mathbf{x}), t(z ; \mathbf{x})]=0
\]
- The transfer matrix generates the deformed Markov matrix
\[
\frac{(q-p)}{2} t^{\prime}(1 ; \mathbf{1})=M(\xi)
\]
- They are the building blocks of the transfer matrix (Sklyanin)
\[
t(x ; \mathbf{x})=\operatorname{tr}_{0}\left(\widetilde{K}_{0}(x) R_{0 L}\left(\frac{x}{x_{L}}\right) \ldots R_{01}\left(\frac{x}{x_{1}}\right) K_{0}(x) R_{10}\left(x x_{1}\right) \ldots R_{L 0}\left(x x_{L}\right)\right)
\]
- Yang-Baxter and reflection equations ensure the commutation relation
\[
[t(y ; \mathbf{x}), t(z ; \mathbf{x})]=0
\]
- The transfer matrix generates the deformed Markov matrix
\[
\frac{(q-p)}{2} t^{\prime}(1 ; \mathbf{1})=M(\xi)
\]
- In fact the deformed Markov matrix is related to the XXZ spin chain with integrable boundaries
\[
M(\xi)=U H_{X X Z} U^{-1}
\]

\section*{qKZ equations and matrix ansatz}
- We would like to compute the ground state satisfying
\[
M(\xi)|\Psi(\xi)\rangle=\Lambda_{0}(\xi)|\Psi(\xi)\rangle
\]
- We would like to compute the ground state satisfying
\[
M(\xi)|\Psi(\xi)\rangle=\Lambda_{0}(\xi)|\Psi(\xi)\rangle
\]
- We make use of the integrable structure by introducing the inhomogeneity parameters \(\mathbf{x}=x_{1}, \ldots, x_{L}\) and a further deformation \(s\) in the ground state \(|\Psi(\mathbf{x} ; s, \xi)\rangle\)
- We would like to compute the ground state satisfying
\[
M(\xi)|\Psi(\xi)\rangle=\Lambda_{0}(\xi)|\Psi(\xi)\rangle
\]
- We make use of the integrable structure by introducing the inhomogeneity parameters \(\mathbf{x}=x_{1}, \ldots, x_{L}\) and a further deformation \(s\) in the ground state \(|\Psi(x ; s, \xi)\rangle\)
- We want to solve the exchange relations
\[
\begin{aligned}
\check{R}_{i, i+1}\left(\frac{x_{i+1}}{x_{i}}\right)\left|\Psi\left(\ldots x_{i}, x_{i+1} \ldots\right)\right\rangle & =\left|\Psi\left(\ldots x_{i+1}, x_{i} \ldots\right)\right\rangle \\
K_{1}\left(1 / x_{1}\right)\left|\Psi\left(1 / x_{1}, x_{2} \ldots\right)\right\rangle & =\left|\Psi\left(s x_{1}, x_{2} \ldots\right)\right\rangle \\
\bar{K}\left(x_{L}\right)\left|\Psi\left(\ldots x_{L-1}, x_{L}\right)\right\rangle & =\left|\Psi\left(\ldots x_{L-1}, 1 / x_{L}\right)\right\rangle .
\end{aligned}
\]
- We would like to compute the ground state satisfying
\[
M(\xi)|\Psi(\xi)\rangle=\Lambda_{0}(\xi)|\Psi(\xi)\rangle
\]
- We make use of the integrable structure by introducing the inhomogeneity parameters \(\mathbf{x}=x_{1}, \ldots, x_{L}\) and a further deformation \(s\) in the ground state \(|\Psi(x ; s, \xi)\rangle\)
- We want to solve the exchange relations
\[
\begin{aligned}
\check{R}_{i, i+1}\left(\frac{x_{i+1}}{x_{i}}\right)\left|\Psi\left(\ldots x_{i}, x_{i+1} \ldots\right)\right\rangle & =\left|\Psi\left(\ldots x_{i+1}, x_{i} \ldots\right)\right\rangle \\
K_{1}\left(1 / x_{1}\right)\left|\Psi\left(1 / x_{1}, x_{2} \ldots\right)\right\rangle & =\left|\Psi\left(s x_{1}, x_{2} \ldots\right)\right\rangle \\
\bar{K}\left(x_{L}\right)\left|\Psi\left(\ldots x_{L-1}, x_{L}\right)\right\rangle & =\left|\Psi\left(\ldots x_{L-1}, 1 / x_{L}\right)\right\rangle .
\end{aligned}
\]
- These relations are called \(q K Z\) equations.

\section*{Matrix ansatz}

\section*{Matrix ansatz}
- General idea (Derrida, Evans, Hakim, Pasquier)
\[
\longrightarrow A_{1} \quad \quad \square \quad \longrightarrow A_{0}
\]

\section*{Matrix ansatz}
- General idea (Derrida, Evans, Hakim, Pasquier)
\[
\longrightarrow A_{1} \quad\llcorner \lrcorner \longrightarrow A_{0}
\]
- The component associated to configuration \(\boldsymbol{\tau}=\left(\tau_{1}, \ldots, \tau_{L}\right)\) of the vector \(|\Psi(\mathbf{x} ; s, \xi)\rangle\) writes
\[
\left.\psi_{\tau}(\mathrm{x} ; s, \xi)=\left\langle\langle W| \mathbb{S} A_{\tau_{1}}\left(x_{1}\right) \ldots A_{\tau_{L-1}}\left(x_{L-1}\right) A_{\tau_{L}}\left(x_{L}\right) \mid V\right\rangle\right\rangle .
\]

\section*{Matrix ansatz}
- General idea (Derrida, Evans, Hakim, Pasquier)
\[
\longrightarrow A_{1} \quad\left\llcorner\longrightarrow \longrightarrow A_{0}\right.
\]
- The component associated to configuration \(\boldsymbol{\tau}=\left(\tau_{1}, \ldots, \tau_{L}\right)\) of the vector \(|\Psi(\mathbf{x} ; s, \xi)\rangle\) writes
\[
\left.\psi_{\tau}(\mathrm{x} ; s, \xi)=\left\langle\langle W| \mathbb{S} A_{\tau_{1}}\left(x_{1}\right) \ldots A_{\tau_{L-1}}\left(x_{L-1}\right) A_{\tau_{L}}\left(x_{L}\right) \mid V\right\rangle\right\rangle .
\]
- The deformed ground state is concisely written
\[
\left.|\Psi(x ; s, \xi)\rangle=\left\langle\langle W| \mathbb{S} \mathbb{A}\left(x_{1}\right) \otimes \ldots \otimes \mathbb{A}\left(x_{L}\right) \mid V\right\rangle\right\rangle,
\]
\[
\text { with } \quad \mathbb{A}(x)=\binom{A_{0}(x)}{A_{1}(x)} \text {. }
\]
- In this context the \(q K Z\) equation translates into:
\[
\begin{aligned}
\check{R}\left(\frac{x_{i+1}}{x_{i}}\right) \mathbb{A}\left(x_{i}\right) \otimes \mathbb{A}\left(x_{i+1}\right) & =\mathbb{A}\left(x_{i+1}\right) \otimes \mathbb{A}\left(x_{i}\right), \\
K\left(x_{1}^{-1}\right)\langle W| S \mathbb{S}\left(x_{1}^{-1}\right) & =\left\langle\langle W| S \mathbb{S}\left(s x_{1}\right),\right. \\
\left.\bar{K}\left(x_{L}\right) \mathbb{A}\left(x_{L}\right)|V\rangle\right\rangle & \left.=\mathbb{A}\left(x_{L}^{-1}\right)|V\rangle\right\rangle .
\end{aligned}
\]
- In this context the \(q K Z\) equation translates into:
\[
\begin{aligned}
\check{R}\left(\frac{x_{i+1}}{x_{i}}\right) \mathbb{A}\left(x_{i}\right) \otimes \mathbb{A}\left(x_{i+1}\right) & =\mathbb{A}\left(x_{i+1}\right) \otimes \mathbb{A}\left(x_{i}\right), \\
K\left(x_{1}^{-1}\right)\left\langle\langle W| \mathbb{S A}\left(x_{1}^{-1}\right)\right. & =\left\langle\langle W| \mathbb{S} \mathbb{A}\left(s x_{1}\right),\right. \\
\left.\bar{K}\left(x_{L}\right) \mathbb{A}\left(x_{L}\right)|V\rangle\right\rangle & \left.=\mathbb{A}\left(x_{L}^{-1}\right)|V\rangle\right\rangle .
\end{aligned}
\]
- There exists an explicit polynomial solution \(\left|\Psi^{(m)}(\mathbf{x} ; s)\right\rangle\) when
\[
\xi=s^{m}, \quad m \geq 1
\]

\section*{Explicit construction of the solution}

\section*{Explicit construction of the solution}

The building blocks are a deformed oscillator algebra generated by \(\mathbf{e}, \mathbf{d}\) and \(\mathbf{S}\)
\[
p \mathbf{d e}-q \mathbf{e d}=p-q, \quad \mathbf{d S}=s \mathbf{S} \mathbf{d}, \quad \mathbf{S e}=s \mathbf{e} \mathbf{S}
\]

\section*{Explicit construction of the solution}

The building blocks are a deformed oscillator algebra generated by \(\mathbf{e}, \mathbf{d}\) and \(\mathbf{S}\)
\[
p \mathbf{d e}-q \mathbf{e d}=p-q, \quad \mathbf{d S}=s \mathbf{S} \mathbf{d}, \quad \mathbf{S e}=s \mathbf{e} \mathbf{S}
\]
and paired boundary vectors \(\langle\langle w|\) and \(\mid v\rangle\rangle\)
\[
\begin{aligned}
\langle\langle w|(\alpha \mathbf{e}-\gamma \mathbf{d}) & =\langle\langle w|(p-q+\gamma-\alpha), \\
(\beta \mathbf{d}-\delta \mathbf{e})|v\rangle\rangle & =(p-q+\delta-\beta)|v\rangle\rangle
\end{aligned}
\]

\section*{Explicit construction of the solution}

The building blocks are a deformed oscillator algebra generated by \(\mathbf{e}, \mathbf{d}\) and \(\mathbf{S}\)
\[
p \mathbf{d e}-q \mathbf{e d}=p-q, \quad \mathbf{d S}=s \mathbf{S} \mathbf{d}, \quad \mathbf{S e}=s \mathbf{e} \mathbf{S}
\]
and paired boundary vectors \(\langle\langle w|\) and \(\mid v\rangle\rangle\)
\[
\begin{aligned}
\langle\langle w|(\alpha \mathbf{e}-\gamma \mathbf{d}) & =\langle\langle w|(p-q+\gamma-\alpha) \\
(\beta \mathbf{d}-\delta \mathbf{e})|v\rangle\rangle & =(p-q+\delta-\beta)|v\rangle\rangle
\end{aligned}
\]
and \(\langle\langle\widetilde{w}|\) and \(\mid \widetilde{v}\rangle\rangle\) :
\[
\begin{aligned}
\langle\langle\widetilde{w}|(\alpha \mathbf{e}-\gamma \mathbf{d}) & =\langle\langle\widetilde{w}|(\alpha-\gamma) \\
(\beta \mathbf{d}-\delta \mathbf{e})|\widetilde{v}\rangle\rangle & =(\beta-\delta)|\widetilde{v}\rangle\rangle
\end{aligned}
\]

Building on this algebra, we define
\[
\begin{aligned}
\mathbb{S}^{(m)} & =\mathbf{S}^{2 m-1} \otimes \mathbf{S}^{2 m-2} \otimes \ldots \otimes \mathbf{S}^{3} \otimes \mathbf{S}^{2} \otimes \mathbf{S} \\
\mathbb{A}^{(m)}(x) & =\underbrace{L(x) \dot{\otimes} \ldots \dot{\otimes} L(x)}_{m-1 \text { times }} \dot{\otimes} b(x),
\end{aligned}
\]

Building on this algebra, we define
\[
\begin{aligned}
\mathbb{S}^{(m)} & =\mathbf{S}^{2 m-1} \otimes \mathbf{S}^{2 m-2} \otimes \ldots \otimes \mathbf{S}^{3} \otimes \mathbf{S}^{2} \otimes \mathbf{S} \\
\mathbb{A}^{(m)}(x) & =\underbrace{L(x) \dot{\otimes} \ldots \dot{\otimes} L(x)}_{m-1 \text { times }} \dot{\otimes} b(x),
\end{aligned}
\]
with
\[
L(x)=\left(\begin{array}{cc}
1 & \mathbf{e} \\
x \mathbf{d} & x
\end{array}\right) \dot{\otimes}\left(\begin{array}{cc}
1 / x & \mathbf{e} / x \\
\mathbf{d} & 1
\end{array}\right), \quad b(x)=\binom{1 / x+\mathbf{e}}{x+\mathbf{d}}
\]

Building on this algebra, we define
\[
\begin{aligned}
\mathbb{S}^{(m)} & =\mathbf{S}^{2 m-1} \otimes \mathbf{S}^{2 m-2} \otimes \ldots \otimes \mathbf{S}^{3} \otimes \mathbf{S}^{2} \otimes \mathbf{S} \\
\mathbb{A}^{(m)}(x) & =\underbrace{L(x) \dot{\otimes} \ldots \dot{\otimes} L(x)}_{m-1 \text { times }} \dot{\otimes} b(x),
\end{aligned}
\]
with
\[
L(x)=\left(\begin{array}{cc}
1 & \mathbf{e} \\
x \mathbf{d} & x
\end{array}\right) \dot{\otimes}\left(\begin{array}{cc}
1 / x & \mathbf{e} / x \\
\mathbf{d} & 1
\end{array}\right), \quad b(x)=\binom{1 / x+\mathbf{e}}{x+\mathbf{d}}
\]

We also define boundary vectors
\[
\begin{aligned}
\left\langle\left\langle W^{(m)}\right|\right. & =\underbrace{\langle\langle w| \otimes\langle\widetilde{w}| \otimes \ldots \otimes\langle\langle w| \otimes\langle\langle\widetilde{w}|}_{m-1 \text { times }} \otimes\langle\langle w| \\
\left.\left|V^{(m)}\right\rangle\right\rangle & =\underbrace{|v\rangle\rangle \otimes|\widetilde{v}\rangle\rangle \otimes \ldots \otimes|v\rangle\rangle \otimes|\widetilde{v}\rangle\rangle}_{m-1 \text { times }} \otimes|v\rangle\rangle .
\end{aligned}
\]

\section*{Main result}

For integer \(m>0\) and \(\xi=s^{m}\),
\[
\left.\left|\Psi^{(m)}(\mathbf{x} ; s)\right\rangle=\frac{1}{\Omega^{(m)}}\left\langle\left\langle W^{(m)}\right| \mathbb{S}^{(m)} \mathbb{A}^{(m)}\left(x_{1}\right) \otimes \ldots \otimes \mathbb{A}^{(m)}\left(x_{N}\right) \mid V^{(m)}\right\rangle\right\rangle,
\]
with normalisation factor
\[
\left.\Omega^{(m)}=\left\langle\left\langle W^{(m)}\right| \mathbb{S}^{(m)} \mid V^{(m)}\right\rangle\right\rangle,
\]
is a solution of the \(q K Z\) equations.

\section*{Koornwinder polynomials and conjecture}

\section*{Symmetric Koornwinder polynomials}

\section*{Symmetric Koornwinder polynomials}
- We define the "partition function"
\[
\mathcal{Z}^{(m)}(\mathbf{x} ; s)=\left\langle 1 \mid \psi^{(m)}(\mathbf{x} ; s)\right\rangle
\]

\section*{Symmetric Koornwinder polynomials}
- We define the "partition function"
\[
\mathcal{Z}^{(m)}(\mathbf{x} ; s)=\left\langle 1 \mid \Psi^{(m)}(\mathbf{x} ; s)\right\rangle
\]
- \(\mathcal{Z}^{(m)}(\mathbf{x} ; s)\) is a Laurent polynomial which is symmetric under
\[
x_{i} \leftrightarrow x_{j}, \quad x_{i} \leftrightarrow \frac{1}{x_{i}}
\]

\section*{Symmetric Koornwinder polynomials}
- We define the "partition function"
\[
\mathcal{Z}^{(m)}(\mathbf{x} ; s)=\left\langle 1 \mid \Psi^{(m)}(\mathbf{x} ; s)\right\rangle
\]
- \(\mathcal{Z}^{(m)}(\mathbf{x} ; s)\) is a Laurent polynomial which is symmetric under
\[
x_{i} \leftrightarrow x_{j}, \quad x_{i} \leftrightarrow \frac{1}{x_{i}}
\]
- We can show that \(\mathcal{Z}^{(m)}(\mathbf{x} ; s)\) is the symmetric Koornwinder polynomial \(P_{(m)^{L}}(\mathbf{x})\).

\section*{Symmetric Koornwinder polynomials}
- We define the "partition function"
\[
\mathcal{Z}^{(m)}(\mathbf{x} ; s)=\left\langle 1 \mid \Psi^{(m)}(\mathbf{x} ; s)\right\rangle
\]
- \(\mathcal{Z}^{(m)}(\mathbf{x} ; s)\) is a Laurent polynomial which is symmetric under
\[
x_{i} \leftrightarrow x_{j}, \quad x_{i} \leftrightarrow \frac{1}{x_{i}}
\]
- We can show that \(\mathcal{Z}^{(m)}(\mathbf{x} ; s)\) is the symmetric Koornwinder polynomial \(P_{(m)^{L}}(\mathbf{x})\).
- Symmetric Koornwinder polynomials are a family of orthogonal polynomials: they satisfy difference equations and they have a contour integral expression.

\section*{Link with the ground state}

\section*{Link with the ground state}
- The qKZ equations imply the scattering relations
\[
\mathcal{S}_{i}(\mathbf{x})\left|\Psi\left(\ldots, x_{i}, \ldots\right)\right\rangle=\left|\Psi\left(\ldots, s x_{i}, \ldots\right)\right\rangle,
\]

\section*{Link with the ground state}
- The qKZ equations imply the scattering relations
\[
\mathcal{S}_{i}(\mathbf{x})\left|\Psi\left(\ldots, x_{i}, \ldots\right)\right\rangle=\left|\Psi\left(\ldots, s x_{i}, \ldots\right)\right\rangle,
\]
- When \(s=1\), we have the relations
\[
\left.\mathcal{S}_{i}(\mathbf{x})\right|_{s=1}=t\left(x_{i} \mid \mathbf{x}\right),\left.\quad \frac{\partial}{\partial x_{i}} \mathcal{S}_{i}(\mathbf{x})\right|_{s=x_{1}=\ldots=x_{N}=1}=\frac{2}{p-q} M(\xi)
\]

\section*{Link with the ground state}
- The qKZ equations imply the scattering relations
\[
\mathcal{S}_{i}(\mathbf{x})\left|\Psi\left(\ldots, x_{i}, \ldots\right)\right\rangle=\left|\Psi\left(\ldots, s x_{i}, \ldots\right)\right\rangle,
\]
- When \(s=1\), we have the relations
\[
\left.\mathcal{S}_{i}(\mathbf{x})\right|_{s=1}=t\left(x_{i} \mid \mathbf{x}\right),\left.\quad \frac{\partial}{\partial x_{i}} \mathcal{S}_{i}(\mathbf{x})\right|_{s=x_{1}=\ldots=x_{N}=1}=\frac{2}{p-q} M(\xi)
\]
- For \(s \rightarrow 1\), the scattering relation seems to degenerate into an eigenvalue equation
- To solve the \(q K Z\) equations, we imposed the constraint \(s=\xi^{1 / m}\).
- To solve the \(q K Z\) equations, we imposed the constraint \(s=\xi^{1 / m}\).
- This implies that \(s \rightarrow 1\) when \(m \rightarrow \infty\).
- To solve the \(q \mathrm{KZ}\) equations, we imposed the constraint \(s=\xi^{1 / m}\).
- This implies that \(s \rightarrow 1\) when \(m \rightarrow \infty\).
- We thus expect \(\left|\Psi^{(m)}\left(\mathbf{x} ; s=\xi^{1 / m}\right)\right\rangle\) to converge toward an eigenvector of the scattering matrices.
- To solve the \(q \mathrm{KZ}\) equations, we imposed the constraint \(s=\xi^{1 / m}\).
- This implies that \(s \rightarrow 1\) when \(m \rightarrow \infty\).
- We thus expect \(\left|\Psi^{(m)}\left(\mathbf{x} ; s=\xi^{1 / m}\right)\right\rangle\) to converge toward an eigenvector of the scattering matrices.
We conjecture that
\[
\begin{aligned}
& \lim _{m \rightarrow \infty} \frac{\left|\psi^{(m)}\left(\mathbf{x} ; s=\xi^{1 / m}\right)\right\rangle}{\mathcal{Z}^{(m)}\left(\mathbf{x} ; s=\xi^{1 / m}\right)}=\left|\Psi_{0}(\mathbf{x} ; \xi)\right\rangle \\
& \lim _{m \rightarrow \infty} \frac{\ln (\xi)}{m} \ln \left(\mathcal{Z}^{(m)}\left(\mathbf{x} ; s=\xi^{1 / m}\right)\right)=F_{0}(\mathbf{x} ; \xi)
\end{aligned}
\]
where \(\left|\Psi_{0}\right\rangle\) and \(F_{0}\) are smooth functions of \(\mathbf{x}\).
- To solve the \(q \mathrm{KZ}\) equations, we imposed the constraint \(s=\xi^{1 / m}\).
- This implies that \(s \rightarrow 1\) when \(m \rightarrow \infty\).
- We thus expect \(\left|\Psi^{(m)}\left(\mathbf{x} ; s=\xi^{1 / m}\right)\right\rangle\) to converge toward an eigenvector of the scattering matrices.
We conjecture that
\[
\begin{aligned}
& \lim _{m \rightarrow \infty} \frac{\left|\psi^{(m)}\left(\mathbf{x} ; s=\xi^{1 / m}\right)\right\rangle}{\mathcal{Z}^{(m)}\left(\mathbf{x} ; s=\xi^{1 / m}\right)}=\left|\Psi_{0}(\mathbf{x} ; \xi)\right\rangle \\
& \lim _{m \rightarrow \infty} \frac{\ln (\xi)}{m} \ln \left(\mathcal{Z}^{(m)}\left(\mathbf{x} ; s=\xi^{1 / m}\right)\right)=F_{0}(\mathbf{x} ; \xi)
\end{aligned}
\]
where \(\left|\Psi_{0}\right\rangle\) and \(F_{0}\) are smooth functions of \(\mathbf{x}\).
The second part of the conjecture can be rewritten with symmetric Koornwinder
\[
\lim _{m \rightarrow \infty} \frac{\ln (\xi)}{m} \ln \left(P_{\left(m^{L}\right)}\left(\mathbf{x} ; s=\xi^{1 / m}\right)\right)=F_{0}(\mathbf{x} ; \xi)
\]
- The function \(F_{0}(\mathbf{x} ; \xi)\) is symmetric.
- The function \(F_{0}(\mathbf{x} ; \xi)\) is symmetric.
- The vector \(\left|\Psi_{0}(\mathbf{x} ; \xi)\right\rangle\) is an eigenvector of the scattering matrices at \(s=1\)
\[
\mathcal{S}_{i}(\mathbf{x} ; 1, \xi)\left|\Psi_{0}(\mathbf{x} ; \xi)\right\rangle=\exp \left(x_{i} \frac{\partial F_{0}}{\partial x_{i}}(\mathbf{x} ; \xi)\right)\left|\Psi_{0}(\mathbf{x} ; \xi)\right\rangle
\]
- The function \(F_{0}(\mathbf{x} ; \xi)\) is symmetric.
- The vector \(\left|\Psi_{0}(\mathbf{x} ; \xi)\right\rangle\) is an eigenvector of the scattering matrices at \(s=1\)
\[
\mathcal{S}_{i}(\mathbf{x} ; 1, \xi)\left|\Psi_{0}(\mathbf{x} ; \xi)\right\rangle=\exp \left(x_{i} \frac{\partial F_{0}}{\partial x_{i}}(\mathbf{x} ; \xi)\right)\left|\Psi_{0}(\mathbf{x} ; \xi)\right\rangle
\]
- The vector \(\left|\Psi_{0}(\mathbf{1} ; \xi)\right\rangle\) is an eigenvector of the deformed Markov matrix
\[
M(\xi)\left|\psi_{0}(\mathbf{1} ; \xi)\right\rangle=\frac{p-q}{2} \frac{\partial^{2} F_{0}}{\partial x_{i}^{2}}(\mathbf{1} ; \xi)\left|\psi_{0}(\mathbf{1} ; \xi)\right\rangle
\]
- The function \(F_{0}(\mathbf{x} ; \xi)\) is symmetric.
- The vector \(\left|\Psi_{0}(\mathbf{x} ; \xi)\right\rangle\) is an eigenvector of the scattering matrices at \(s=1\)
\[
\mathcal{S}_{i}(\mathbf{x} ; 1, \xi)\left|\Psi_{0}(\mathbf{x} ; \xi)\right\rangle=\exp \left(x_{i} \frac{\partial F_{0}}{\partial x_{i}}(\mathbf{x} ; \xi)\right)\left|\Psi_{0}(\mathbf{x} ; \xi)\right\rangle
\]
- The vector \(\left|\Psi_{0}(\mathbf{1} ; \xi)\right\rangle\) is an eigenvector of the deformed Markov matrix
\[
M(\xi)\left|\psi_{0}(\mathbf{1} ; \xi)\right\rangle=\frac{p-q}{2} \frac{\partial^{2} F_{0}}{\partial x_{i}^{2}}(\mathbf{1} ; \xi)\left|\psi_{0}(\mathbf{1} ; \xi)\right\rangle
\]
- We thus get a formula for the cumulants generating function of the current
\[
E(\mu)=\Lambda_{0}\left(e^{\mu}\right)=\frac{p-q}{2} \frac{\partial^{2} F_{0}}{\partial x_{i}^{2}}\left(\mathbf{1} ; e^{\mu}\right)
\]

\section*{Toward an exact expression of \(F_{0}\) ?}

\section*{Toward an exact expression of \(F_{0}\) ?}
- The symmetric Koornwinder polynomial \(P_{\left(m^{L}\right)}(\mathbf{x})\) is an eigenfunction of a difference operator \(D\)

\section*{Toward an exact expression of \(F_{0}\) ?}
- The symmetric Koornwinder polynomial \(P_{\left(m^{L}\right)}(\mathbf{x})\) is an eigenfunction of a difference operator \(D\)
- It translates into a differential equation for \(F_{0}\) :
\[
\begin{aligned}
& \sum_{i=1}^{L} g_{i}(\mathbf{x})\left[\exp \left(x_{i} \frac{\partial F_{0}}{\partial x_{i}}(\mathbf{x} ; \xi)\right)-1\right]+\sum_{i=1}^{L} g_{i}\left(\mathbf{x}^{-1}\right)\left[\exp \left(-x_{i} \frac{\partial F_{0}}{\partial x_{i}}(\mathbf{x} ; \xi)\right)-1\right] \\
& =\frac{1-\left(\frac{p}{q}\right)^{L}}{1-\frac{p}{q}}(\xi-1)\left(\frac{\alpha}{\gamma} \frac{\beta}{\delta}\left(\frac{p}{q}\right)^{L-1}-1 / \xi\right)
\end{aligned}
\]

\section*{Toward an exact expression of \(F_{0}\) ?}
- The symmetric Koornwinder polynomial \(P_{\left(m^{L}\right)}(\mathbf{x})\) is an eigenfunction of a difference operator \(D\)
- It translates into a differential equation for \(F_{0}\) :
\[
\begin{aligned}
& \sum_{i=1}^{L} g_{i}(\mathbf{x})\left[\exp \left(x_{i} \frac{\partial F_{0}}{\partial x_{i}}(\mathbf{x} ; \xi)\right)-1\right]+\sum_{i=1}^{L} g_{i}\left(\mathbf{x}^{-1}\right)\left[\exp \left(-x_{i} \frac{\partial F_{0}}{\partial x_{i}}(\mathbf{x} ; \xi)\right)-1\right] \\
& =\frac{1-\left(\frac{p}{q}\right)^{L}}{1-\frac{p}{q}}(\xi-1)\left(\frac{\alpha}{\gamma} \frac{\beta}{\delta}\left(\frac{p}{q}\right)^{L-1}-1 / \xi\right)
\end{aligned}
\]
\[
\begin{aligned}
g_{i}(\mathbf{x})= & \frac{\left(\gamma-(p-q+\gamma-\alpha) x_{i}-\alpha x_{i}^{2}\right)\left(\delta-(p-q+\delta-\beta) x_{i}-\beta x_{i}^{2}\right)}{\gamma \delta\left(1-x_{i}^{2}\right)^{2}} \\
& \times \prod_{\substack{j=1 \\
j \neq i}}^{L} \frac{\left(q x_{j}-p x_{i}\right)\left(q-p x_{i} x_{j}\right)}{q^{2}\left(x_{j}-x_{i}\right)\left(1-x_{i} x_{j}\right)}
\end{aligned}
\]

\section*{Arguments which support the conjecture}

\section*{Arguments which support the conjecture}
- For \(L=1\), the previous equation can be analytically solved...

\section*{Arguments which support the conjecture}
- For \(L=1\), the previous equation can be analytically solved... and provides the correct value of the generating function \(E(\mu)\) !!!

\section*{Arguments which support the conjecture}
- For \(L=1\), the previous equation can be analytically solved... and provides the correct value of the generating function \(E(\mu)\) !!!
- For \(L=2,3\) we can evaluate numerically \(F_{0}(\mathbf{x} ; \xi)\)

\section*{Arguments which support the conjecture}
- For \(L=1\), the previous equation can be analytically solved... and provides the correct value of the generating function \(E(\mu)\) !!!
- For \(L=2,3\) we can evaluate numerically \(F_{0}(\mathbf{x} ; \xi)\)


\title{
Fluctuations of the current in open ASEP \\ qKZ equations and matrix ansatz Koornwinder polynomials and conjecture \\ Partition function and symmetric Koornwinder Generating function conjecture
}

\section*{Thank you!}```

